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Balancing Performance and Safety

Current AV technology still struggles in 
non-cooperative scenarios like merging due to 
competing objectives:

● Maximize performance: negotiate the 
merge without delay or hesitation

● Maintain safety: avoid catastrophic failures 
and crashes

Racing (autonomously) highlights this performance 
safety tradeoff.

Videos: Mobileye and Formula 1



Autonomous Racing

In autonomous racing, the ego-agent must lap 
a racetrack in the presence of other agents 
deploying unknown policies. 

The agent wins by:

● Completing the race first
● Crashing automatically results in a loss

Our simulation and hardware platform is 
open-source: https://f1tenth.org

http://www.youtube.com/watch?v=7Yat9FZzE4g
https://f1tenth.org


Challenges of Autonomous Racing

Crashing is expensive and dangerous

Image: Formula 1



Sensor observations do not uniquely determine the opponent’s behavior



Challenges of Autonomous Racing

Strategies are secret

Image: Mercedes Benz AMG Petronas



Robust Reinforcement Learning

● We capture uncertainty in the behaviors of other agents through an ambiguity 
set, 

● A larger ambiguity set,     , ensures a greater degree of safety while 
sacrificing performance against a particular opponent

● Two challenges: learning  a   offline (without expert demonstrations) and 
adjusting     online.

If we knew the opponent’s behavior 
we wouldn’t need an ambiguity set



Population Synthesis

Parameterized Policy: 
1. Goal Generator: Inverse 

Autoregressive Flow weights
2. Goal Evaluator: 

non-differentiable cost 
function weights

(Kingma et al 17)
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Population Synthesis

Parameterized Policy: 
1. Goal Generator: Inverse 

Autoregressive Flow weights
2. Goal Evaluator: 

non-differentiable cost 
function weights

Population Synthesis:
1. Highly-scalable population-based 

MCMC solution
2. Uses self-play to generate 

competitive agents

Opponent Prototypes:
1. Elite members of population 

are described by their policy 
parameters

2. A diverse subset is selected for 
online use

(Kulesza et al 12)
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Sensor Measurements

Opponent Prediction

(Lattimore & Szepesvari 20, Papamakarios et al 17)
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Sensor Measurements

Distributionally Robust Optimization

Masked Autoregressive Flow

Inverse Autoregressive Flow

(Namkoong & Duchi 17)
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Sensor Measurements

Control

Distributionally Robust Optimization

Opponent Prediction

Motion Planner Goals

Masked Autoregressive Flow

Inverse Autoregressive Flow



Related Work

● Robust RL/control
○ Robust MDP (Nilim, El Ghaoui 05)
○ POMDP (Kaelbling et al 98)
○ Adversarial RL (Pinto et al 17, Mandlekar et al 17) 

●
● Belief-space planning (Kochenderfer 15, Galceran et al 15, Van Den Berg et al 11)

● DRO (Ben-Tal et al 13, Namkoong & Duchi 17)

● Bandits (Lattimore & Szepesvari 20)

● Quality-diversity algorithms (Mouret & Clune 15)

● Simulated tempering (Marinari & Parisi 92)
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In our AV application, θ  parametrizes a neural network used to sample trajectories to follow, x is a 
weighting of various cost functions that the vehicle uses to select trajectories from the samples, and            
is the simulated lap time.

Population Synthesis
The goal of offline population synthesis is to generate a diverse set of competitive agent behaviors.



Step 1: Initialize Populations

● Builds off of a concept known in 
MCMC literature as parallel 
tempering (Marinari & Parisi 92)

● Initialize several “baths” of 
configurations that are 
composed of both differentiable 
and non-differentiable 
parameters

● Unlike parallel tempering we 
maintain populations at each 
level

Only accepts changes 
to configurations which 
improve performance

Accepts any configuration 
change regardless of 
performance



Step 2: Vertical MCMC Exploration

● In the vertical phase of the 
algorithm we explore the space of 
non-differentiable parameters using 
MCMC. 

● Each proposal is evaluated by a 
race simulation between the 
perturbed configuration and the 
previous configuration.

● Proposals are accepted according 
to the standard MH criteria.

MCMC steps, Hit & Run 
proposals + MH 
acceptance criteria

Simulations happen 
asynchronously in 
parallel



Step 3: SGD Parameter Update

● Run SGD updates on differentiable 
parameters (e.g. MAF/IAF network 
parameters).

● The objective is to maximizes the 
likelihood of the trajectories chosen 
by the agent with cost functions 
parametrized by    .

 

No new simulation calls, utilize 
buffer from the vertical steps. 



Step 4: Horizontal MCMC Tempering

● Horizontal proposals consist of 
swapping two configurations in 
adjacent temperature levels 
uniformly at random

● The proposal is accepted using 
standard Metropolis-Hastings (MH) 
criteria

● This procedure is especially 
efficient because it doesn’t require 
new simulations. Poorly performing 

configurations are 
demoted with 
high-probability.

High-performing 
configurations are 
promoted with 
high-probability



Step 5: Temperature Updates

● Anneal horizontal swap acceptance 
probability in order to automatically 
adjust temperature levels.

● This adaptive scheme is crucial in 
our problem setting, where we a 
priori have no knowledge of 
appropriate scales for f and, as a 
result, β.



End Result: Population of Opponent Prototypes

When racing against a particular opponent, the agent maintains a belief vector w(t) of the opponent’s behavior 
patterns as a categorical distribution over these prototype behaviors. We then parametrize the ambiguity set as a 
ball around this nominal belief w(t).
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Distributionally Robust Trajectory Cost

We will investigate how the ego-agent will choose its actions taking into account 
the opponent behaviors.

Motion Planner Goals Opponent Predictions Plan



Distributionally Robust Trajectory Cost
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Distributionally Robust Trajectory Cost

We repeat this for every motion planning goal, and select the goal with the lowest 
robust cost. 

If there are 10 possible opponents and 100 possible motion planning goals we 
will need to compute 1000 receding horizon costs just to setup the problem!



Efficient Approximation of the Robust Cost
● Challenge: what happens when there are many possible opponents?
● At each time step we sample N<d opponent prototypes
● Beliefs begin as a uniform distribution

T=t

Select opponent 1,5, and 3… and compute:                                                            



Efficient Approximation of the Robust Cost

Select opponent 1,5, and 3… and compute:                                                            

T=t

Proposition 1 shows we can bound the approximation quality, see the paper for 
details:                                                            



Online Adaptation

T=h T=h+1 T=h+2

At each timestep, compute likelihood that the real trajectory was generated by 
prototype i: 



Online Adaptation

T=h T=h+1 T=h+2

Then we can construct an unbiased estimate of subgradient: 



Online Adaptation

T=t+1

Update the belief vector using modified EXP3 (Auer et al 2002):

T=h T=h+1 T=h+2



Online Adaptation

T=t+1

With the following regret bound:

T=h T=h+1 T=h+2
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Hardware



Population synthesis results

Decrease in average race times over the course of training.

Lower is better!



Illustrations of diversity

Diversity in performing a lap 
in isolation (no opponents)

Diversity in maneuvering near 
an opponent



Regret for opponent identification

In simulation we can identify 
the opponent model with 
only ~150 observations

In the real-world we also 
correctly identify the opponent, 
but it takes longer...



Balancing safety and performance
By actively identifying the opponent’s strategy can we regain the performance of 
aggressive strategies without the downside of compromised safety?

The larger the 
robustness-ball 
the less frequently 
the agent 
experiences low 
time-to-collision 
events



Balancing safety and performance
By actively identifying the opponent’s strategy can we regain the performance of 
aggressive strategies without the downside of compromised safety?

Larger 
robustness-balls 
without adaptivity 
significantly reduce 
win-rate
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Putting it all together on a real racecar

http://www.youtube.com/watch?v=7Yat9FZzE4g&t=52

