Safety-Critical Machine Learning:
Development & lesting

Aman Sinha
August 17, 2020

Motivation

* We are starting to apply machine learning to high-stakes decision-making

S

d D

* The standard paradigms of ML aren’t enough in safety-critical applications

- Development: minimize average loss over a nominal training dataset

- Testing: check average performance over a test dataset

* New paradigms for handling uncertainty
- Development: build robustness against uncertainties

- Testing: quantify risk (likelihood and severity) of failures

Key ideas of this talk

Robustness Risk

Build models with guaranteed performance | Find failure modes and quantify the
over uncertainty sets probability of failure

Key ideas of this talk

Robustness Risk

Build models with guaranteed performance | Find failure modes and quantify the
over uncertainty sets probability of failure

; ol f(0; X
min max Kol f(6; X)

Key ideas of this talk

Robustness Risk

Build models with guaranteed performance | Find failure modes and quantify the
over uncertainty sets probability of failure

j ol f(0; X
min max Kol f(6; X)

« With small P, can we solve this quickly?

« What about when P is large/unknown?

Key ideas of this talk

Robustness Risk

Build models with guaranteed performance | Find failure modes and quantify the
over uncertainty sets probability of failure

j ol f(0; X
min max Kol f(6; X)

« With small P, can we solve this quickly?

« What about when P is large/unknown?

Key ideas of this talk

Robustness Risk

Build models with guaranteed performance | Find failure modes and quantify the
over uncertainty sets probability of failure

minmax e f(0; X)] Po(f(X) <)

« With small P, can we solve this quickly? * Why is this the right problem?

« What about when P is large/unknown? How do we solve it quickly?

Key ideas of this talk

Robustness Risk

Build models with guaranteed performance | Find failure modes and quantify the
over uncertainty sets probability of failure

minmax e f(0; X)] Po(f(X) <)

« With small P, can we solve this quickly? * Why is this the right problem?

« What about when P is large/unknown? How do we solve it quickly?

Certifiable robustness against adversarial attacks

Sinha*, Namkoong*, Duchi. ICLR 2018.
Sinha*, Namkoong®, Volpi, Duchi. Under review.

Certifiable robustness against adversarial attacks

g . I . s
J' Sl "4 -8
Ve
B .
£ " Y
o of . 1
LA ‘t. R
' . " s >
‘S 'J‘,\ -
- ox)
.—
£ Iy
-~ A - . ’
v : ’
AN ~— B
L 4 : A y g
-~ - g - - 2 f o 4 - - M
MY - ' . - Ao voe
- ‘l &é.
—t? » - - -~ A ' ' ‘ > s
- . < P o &
. . 5 N - . -
< & 4 T \.'/AA T
. . -
. .

“panda” “gibbon” Egg(l)ingi:?;ige
5/.7% confidence 9. 3% confidence g
[Goodfellow et al. 2015] [Athalye et al. 2017]

We want to increase the robustness of ML systems to adversarial attacks (small P)

Current approaches

» Adversarial training heuristics: fast but no theoretical guarantees of robustness

- Goodfellow et al. 2015, Kurakin et al. 2016, Papernot et al. 2016, He et al. 2017,
Carlini & Wagner 2017, Tramer et al. 2017, Madry et al. 2018, etc.

* Formal verification: rigorous guarantees but slow

- Huang et al. 2017, Katz et al. 2017, Kolter & Wong 2017, Tjeng & Tedrake 2017,
Raghunathan et al. 2018

Our goal: balance efficiency with robustness guarantees

Our work: principled adversarial training

- Setup: model/network weights ¢ € O, feature vector X, label Y, and loss ¢(0; X, Y)

Overall idea: replace ¢(6; X,Y’) with robust surrogate ¢~ (6; X,Y)

 For moderate levels of desired robustness and smooth losses /:
- Provably fast convergence, 5-10x as fast as ERM

- Statistical guarantees for performance on (perturbations to) the test set

Distributionally robust optimization (DRO)

* Goal: robustness to perturbations in a Wasserstein ball

» Generally intractable for arbitrary p

7 N\

[Esfahani & Kuhn 2015; Shafieezadeh-Abadeh et al. 2015; Blanchet et al. 2016, Lee & Raginsky 2017]

Distributionally robust optimization (DRO)

minimize Ep, [£(0; X,Y)]
HEO

* Goal: robustness to perturbations in a Wasserstein ball

» Generally intractable for arbitrary p

7 N\

[Esfahani & Kuhn 2015; Shafieezadeh-Abadeh et al. 2015; Blanchet et al. 2016, Lee & Raginsky 2017]

Distributionally robust optimization (DRO)

D X, Y)|: D.(Q), Fy) <
minimize - max {Eq[é(8; X,Y)] : Do(Q, Po) < p}

* Goal: robustness to perturbations in a Wasserstein ball

» Generally intractable for arbitrary p

7 N\

[Esfahani & Kuhn 2015; Shafieezadeh-Abadeh et al. 2015; Blanchet et al. 2016, Lee & Raginsky 2017]

Distributionally robust optimization (DRO)

» Lagrangian relaxation and its dual formulation

- More robustness < larger p < smaller 7y

minimize max{ Coll(0; X,Y)] —vD.(Q, Py) } —
HcO Q e —’
penalty

minimize Ep, [0~ (0; X,Y)]

0co
where %(9; T,1y) ;= max {5(9; xlvy) — ”YHCU/ — xHQ }
x'eX \——— ——
penalty

» Compare to ERM: minimizegco Ep, [£(0; X,Y)

[Blanchet et al. 2016]

Solving the optimization problem
¢’Y(6’7 L0, y()) = Ia?ea)i'({6(97 L, y()) o W/Hx o ZEOHQ}

Key insight: (z,y) — £(0;x,vy) — ||z — o]||* is strongly concave for smooth ¢ and
large enough ~y

» Curvature in || - ||* dwarfs out non-concavity of £(6; -)

| — ()

L0

Solving the optimization problem
¢’Y(6’7 L0, y()) = glea)i'({6(97 L, y()) o W/Hx o ZCOHQ}

Key insight: (z,y) — £(0;x,vy) — ||z — o]||* is strongly concave for smooth ¢ and
large enough -y

» Curvature in || - ||* dwarfs out non-concavity of £(6; -)

| — ()
— (@) =z — o’

L0

Solving the optimization problem
¢’Y(6’7 L0, yO) = glea}c.({6(97 L, y()) o W/Hx o ZCOHQ}

Key insight: (z,y) — £(0;x,vy) — ||z — o]||* is strongly concave for smooth ¢ and
large enough -y

» Curvature in || - ||* dwarfs out non-concavity of £(6; -)

—U(z) — Y|z — 0||?
|—(z) — Yol — xo||?

L0

Solving the optimization problem
¢’Y(6’7 L0, yO) = glea}c.({6(97 L, y()) o W/HCE o ZEOHQ}

Key insight: (z,y) — £(0;x,vy) — ||z — o]||* is strongly concave for smooth ¢ and
large enough -y

» Curvature in || - ||* dwarfs out non-concavity of £(6; -)
—((a) '
—l(z) — nllz — zo||”
| —L(z) — 1allz — zo||°
| —L(z) — 3|z — mo]|?

L0

Solving the optimization problem
¢’Y(6’7 L0, yO) = glea}c.({6(97 L, y()) o W/HCE o ZEOHQ}

Key insight: (z,y) — £(0;x,vy) — ||z — o]||* is strongly concave for smooth ¢ and
large enough -y

» Curvature in || - ||* dwarfs out non-concavity of £(6; -)
— () -
—U(z) — 1 lz — zo||° :
| —L(z) = ez — o :
| —L(z) — 3|z — mo]|?

)

L0

Solving the optimization problem
¢’Y(6’7 L0, y()) = glea)i'({6(97 L, y()) o W/Hx o ZCOHQ}

Key insight: (z,y) — £(0;x,vy) — ||z — o]||* is strongly concave for smooth ¢ and
large enough -y

» Curvature in || - ||* dwarfs out non-concavity of £(6; -)

(z)
] () — nllz — =0
—Ll(x) — Y|l — x
_ (z) — 3|z — zo

L0 T

Deep nets with smooth activations (ELUs, sigmoid, etc.) are smooth

Optimization guarantees

Algorithm: SGD for ming Ep, |¢~(60; X, Y)]

e Sample (z%,y") ~ P,

e Compute adversarial example:

(approximate) maximizer 7t of £(6; z, y*) — ||z — x|

o Ol 9t — Vel (0% 7, yt)

S

» For large enough v we can compute 7! in 10-20 gradient ascent steps

* Theorem: converges at standard nonconvex-SGD rate

Certificate of robustness

» Algorithm generalizes: we learn to prevent attacks on the test set

» Owrm = output of Algorithm, Comp, = size of ©, C' = problem-dependent constant,
P,, = empirical training distribution

Theorem (Robustness Certificate)
With high probabillity, for any p > 0

Comp

A

\

U X, Y)] < A Owrm; X,Y
QtDcI(%?a:}lgo)Sp Q[Z(QWRM’ ’)] VP T Py [¢7(WRM, A,)]"‘C

VWTQAAB VNP oM™
NN NN A e T8
O M —CCNOSYV) N
S OH IV OGO W oN

VDAL TV YO

NNUD TN \®© g”
~ g ~"T s 0NI N
NNOMFMg— NS
>N\ A~
MlI NN Y

MNIST digit classification

MNIST classification

* Compare our method (WRM) with fast-gradient (FGM), iterated FGM (IFGM), and
projected gradient method (PGM)

ERM
IFGM
FGM

D> PCM

107 I WRM
0) 0.65 011 O.|15 012 O.|25 0 O.I()S 011 O.|15 012
€adv/C2 €adv/Coxo
Test error vs. €,4. for Test error vs. €,4. for
PGM | - ||» attack PGM || - || attack

[Goodfellow et al. 2015, Kurakin et al. 2016, Madry et al. 2017]

When the model misclassifies

* Minimum perturbation forcing WRM to misclassity is perceptible

Original

IFGM

Key ideas of this talk

Robustness Risk

Build models with guaranteed performance | Find failure modes and quantify the
over uncertainty sets probability of failure

minmax e f(0; X)] Po(f(X) <)

« With small P, can we solve this quickly? * Why is this the right problem?

» What about when P is large/unknown? How do we solve it quickly?

Balancing safety & performance in high-uncertainty regimes

Sinha*, O’Kelly*, Zheng*, Mangharam, Duchi, Tedrake. ICML 2020.

Balancing safety & performance in high-uncertainty regimes

* When P is large/unknown, balance is
critical:

- Conservativeness leads to poor
performance

- Aggressiveness Iis dangerous

* Autonomous racing is an extreme limit of
autonomous driving

- Strategies are secret

- Crashing is expensive/dangerous
(and makes winning hard)

Robust reinforcement learning

minimize E \E
;

Robust reinforcement learning

Coe)\t T t
minimize Priag%; [C(O())]

\ If we knew the opponent’s behavior,
we wouldn’t need the inner max

 State-action transition probabilities P, observations o, discount factor A, cost c

Robust reinforcement learning

Coe)\t T t
minimize Pﬂ%}%; [C(O())]

\ If we knew the opponent’s behavior,
we wouldn’t need the inner max

 State-action transition probabilities P, observations o, discount factor A, cost c

» Overall idea: learn a useful parametrization for P and then proceed as before
- Offline population synthesis: self-play to learn P, a population of good racers

- Online robust planning: robust belief-space planning against an opponent

Related work

* Robust RL/control
- Robust MDP [Nilim & El Ghaoui 2005]
- POMDP [Kaelbling et al. 1998]
- Adversarial RL [Mandlekar et al. 2017, Pinto et al. 2017]

» Belief-space planning [Van Den Berg et al. 2011, Galceran et al. 2015, Kochenderfer
2019]

 DRO [Namkoong & Duchi 2017]

Offline population synthesis

Goal: generate a diverse set of competitive agent behaviors

Hierarchical Planner

Mission Planner
4 }
Sensors & Behavioral
Perception Planner
[/
Local Planner
y
Policy parametrization 6) €L

Goal generator: neural net
(IAF) weights 0

Goal evaluator: non-
differentiable cost weights «

Offline population synthesis

Goal: generate a diverse set of competitive agent behaviors

Temperature

Initialize g (p Mot} (L) By(t) Bt

Hierarchical Planner

Mission Planner

4 y

Sensors & | Behavioral
Perception Planner

A

Local Planner

Vertical 5(t)| [Falt) | 3 (t)] gl Bt

Iteration

'l'

'r*u’ f;'+l },(1 1)

¢ é? é? il é?

Policy parametrization Search algorithm

l'ern(u/ 1’ +l

* (Goal generator: neural net Employs self-play to
(IAF) weights 0 generate competitive

agents
 (Goal evaluator: non- J

differentiable cost weights «

Offline population synthesis

Goal: generate a diverse set of competitive agent behaviors

Hierarchical Planner
Mission Planner

! b
Sensors & | Behavioral
Perception Planner

4

Local Planner

«é"‘*-

. By +1 f,(l 1)

\ A
l@'*l é? é?é?é? é?

Policy parametrization Search algorithm Diverse population of agents
* (Goal generator: neural net Employs self-play to * Described by thelir
(IAF) weights 6 generate competitive parameters (x,6)
agents

* (Goal evaluator: non-
differentiable cost weights «

Step 1: initialize populations

Temperature

* Builds upon parallel tempering [Marinari
& Parisi 1992]

Initialize B1(1)

* |nitialize several “baths” of configurations
(x,0)

Only accepts changes to Accepts any configuration
configurations which change regardless of
Improve performance performance

Iteration

Step 2: self-play (vertical MCMC)

Temperature

* Explore new proposals for x

Initialize B1(#)

- — - —— — - o e b T - — -

Vertical (3 |(z‘u’ 35(t) : B4(t) 34(t) Sr(t)
» Evaluate each proposal by a race :]

between the old and new configurations

o () . o
° oog : Ooogo - Ooooo
aa o . o po o0 oo
oo ' oo ! : 00
% < 0? . é e ® : . éo o o?

Simulations happen asynchronously in parallel

Iteration

Step 2: self-play (vertical MCMC)

* Explore new proposals for x

» Evaluate each proposal by a race
between the old and new configurations

Temperature

Initialize B1(#)

- — " —— — . o b — —— - — -

Vertical z3|(f|’ 35(t) : Ba(t)

o [. o
Q oog h oo o OOO
ao o : 0 po 00 o
o0 ’ 00 ! : 00
%oog . 2000 : . éoo?

Simulations happen asynchronously in parallel

Iteration

Step 3: differentiable parameter update

Temperature

e Optimize 6 (neural network weights)

-.......-..-...-------------------_---___-----.-,, o o b — -

——— - — - —— - - - — —— - ...------.---____-----------..--..-...----....--..--------..--.-..--.qo-~---------a—-—- --------------------

Iteration

Step 4: configuration swaps (horizontal MCMC)

Temperature

* Propose random swaps of configurations
between adjacent baths

..................... — - — S

Vertical (3(t) | a(t) B4(t) : 34(1) : Arit)

* Efficient way to encourage mixing i ? i(} i 2% é?
because no new simulations needed —
Horizontal

Iteration

Poorly performing High-performing
configs get demoted configs get promoted

Step 5: update temperatures (annealing)

Temperature

» Adaptive annealing scheme: adjust
temperatures by annealing swap-

acceptance probability """" rtical ' """"""
- Convex optimization problem oosfe) | Latees TN R

- - —— — -

Crucial in our setting because we don’t
have any prior knowledge of good race
times (no priors for good temperatures)

Iteration

O — " — — g — g " — - -~

] — -

i? 2? é? é? 2?

End result: diverse population of opponent prototypes

Temperature

Initialize B (t)

o o
c’OO

(] (-]
OOO

Diversity in isolated laps

Iteration

Adapt gt | 1) solves convex optimization problem) /—§3
Vertical 5(t+1) 52(t+'1)§ ‘53(24'1)@ But+ 1) Bt 1) /&
. : | . -/\
O’)
T_—*

e

[+
(X}
L]

© o0 : ° o : °© o O : °© o5 O
© 00 00 ‘ ° oo ' © 00 0° : © 60 00
00 . 00 . 00 . 00
é"‘g é..g . 2.00? . %oo?

: o [|
: °oo°°°

: [-X]

. %ooo?

Diversity in maneuvering
near an opponent

Distributionally robust planning

» When racing against an opponent, we maintain a belief vector w(t) of their behavior
over the learned population of prototypes

‘P is an uncertainty ball around this belief (X2-divergence)

Draw candidate goal Predict opponent Choose goal
behavior

Distributionally robust planning

ca(tig) =3 N Elc(o(s); g)

Opponent Model 2

-7 \Opponent Model 1

Trajectory

Opponent-vehicle
Ego-vehicle

Opponent Model 1 Opponent Model 3 m

Belief space

Distributionally robust planning

ca(t;g) ==) A 'E[e(o(s);)]

s>t

goal g

Opponent Model 2

-=" \Opponnent Model 2
Trajectory

Opponent-vehicle
Ego-vehicle

Opponent Model 1 Opponent Model 3 /f\

Belief space

Distributionally robust planning

cs(t; 9) ==) A T'E[c(o(s); g)]

s>t

goal g

Opponent Model 2

- \Opponent Model 3
Trajectory

Opponent-vehicle
Ego-vehicle

Opponent Model 1 Opponent Model 3 M.d-’/_‘f\

Belief space

Distributionally robust planning

max
q:3>2; wi(55)2<p+1

Opponent Model 2

Distributionally-robust

operating point
Current estimate of

opponent probabilities

w(t)

v ball

Opponent Model 1 Opponent Model 3

Belief space

Z gici(t; g)

(/

goal g

trajectories

Opponent-vehicle
Ego-vehicle

ey

Distributionally robust planning

Repeat this for every motion planning goal and select the goal with the lowest robust cost

max > qici(t; g)

3, wi(L)2<p 41 <

ﬁ

Belief updates (adaptivity)

» Update beliefs using the observed history of the opponent
- Modified version of EXP3 [Auer et al. 2002]

t Model 1 pponent Mo Opponent Model 1 Opponent Model 3

"\ ssible opponent-vehicle
t]ctl

Opponent-vehicle
Ego- hI

Real-world experiments

Power Distribution Board

Planar Lidar

Electronic Speed Controller

. I', = F b

Nvidia Jetson Xavier

-

with
Ackermann Steering

1/10 Scale Chassis [e ' K 4 : Wm"”’W"'mﬁ'ﬂml"

Balancing safety and performance

Larger uncertainty sets (larger p) increase safety but decrease performance

% of iTTC values Win-rate
Agent < 0.5s Agent Non-adaptive
n/N,, = 0.001 7.86 + 0.90 p/N, =0.001]0.593 4+ 0.025
p/N,, = 0.025 6.46+ 0.78 p/N, = 0.025 0.5934+ 0.025
p/N,, = 0.2 4.75+ 0.65 p/Ny, = 0.2 0.538+ 0.025
po/N, = 0.4 5.41+ 0.74 p/N, = 0.4 0.5034+ 0.025
o/N,, = 0.75 5.50+ 0.82 p/N, = 0.75 0.5134 0.025
p/NW — 1.0 5.76 + 0.84 p/NW —= 1.0 0.498+ 0.025

Increased safety with p Decreased win-rate with p

Balancing safety and performance

Online adaptation regains the performance of aggressive strategies:
Safe when uncertain, aggressive once the opponent is identified

Win-rate Win-rate
Agent Non-adaptive Adaptive p-value
p/NW — (.001 0.593 = 0.025 0.588+ 0.025 0.84
p/N, = 0.025 0.593+ 0.025 0.600+ 0.024 0.77
p/N, = 0.2 0.538+ 0.025 0.588+ 0.025 0.045
p/N, = 0.4 0.503+ 0.025 0.573+ 0.025 0.0093
p/N, = 0.75 0.513+ 0.025 0.593+ 0.025 0.0013

p/N,, = 1.0 0.4984 0.025 0.590 == 0.025| 0.00024

Key ideas of this talk

Robustness Risk

Build models with guaranteed performance | Find failure modes and quantify the
over uncertainty sets probability of failure

minmax e f(0; X)] Po(f(X) <)

« With small P, can we solve this quickly? * Why is this the right problem?

« What about when P is large/unknown? How do we solve it quickly?

The risk-based framework

O’Kelly*, Sinha*, Namkoong®*, Duchi, Tedrake. NeurlPS 2018.
O’Kelly*, Sinha*, Norden”, Namkoong*. NeurlPS ML4H 2018.

The risk-based framework

R T T T
-

‘Cather ne Guo

2016-05-1¢ 070405 --- km/h DR6S0GW-2CH/FHD-HD

Tesla Autopilot crashing in highway scenarios

The risk-based framework

w0 99 000 423 Dups 01
DOB. 08/28/1960 sox M
Class: Al Eyes IR
Endorse Heght 6°00"
Com/Med Rstr B

Issued 04/26/2012

Expires 04/26/2016

1
LIDAR DONOR hutr Tl THous

AUTO N. MOUS

3330 WALNUT ST
PHILADELPHIA PA 19104 -

L
: B0
Z
w
SN
-
N
o
L
>
i
o

» Certify a level of reliability

» Work with a blackbox algorithm

Related work

* Formal verification [Kwiatkowska et al. 2011, Althoff and Dolan 2014, Seshia et al.
2015, O’Kelly et al. 2016]

» Falsification [Abbas and Fainekos 2011, Tuncali et al. 2016, DeCastro et al. 2018]

* Probabilistic falsification/Adaptive stress testing [Koren et al. 2018, Lee et al. 2018]

Problems with verification

* A “correctness” specification is
subjective

H2NEWS.COMaL-

* |ntractable

* Requires white-box model

Problems with falsification

* Not designed for coverage

The risk-based framework

- Goal: probability of dangerous event p- := Po(f(X) <)

* Base distribution of behavior X ~ £,

* Objective function (i.e. safety metric) f : X — R

The risk-based framework

Don’t just find
one spot

* Coverage of failure modes

+ 00000
000000 0
r 0000000

r 0000000 .
+ 0000000 .
0000000

¢ 00000 .

* Prioritization by likelihood

Prioritize these
failures

/

| / Not these

Components of the risk-based framework

]
Iy

Simulation Generative models Search algorithm

Search

py = Po(f(X) <)

 Random search (aka naive Monte Carlo)

N
1 —
b= I <7} Bl /oy~ =
1=1

Estimate Error of estimate

» Rule of thumb: need at least 100/ p~ samples for accurate estimate (error bars < 10%)

Search

Failure rate (failures per 100 million miles)
[Kalra & Paddock 2016]

2 g 3 2
m o

(suol|IW) UBALIP 3G O3 PapasU S

Miles Needed to Demonstrate Failure Rates to a Particular Degree of Precision

100 billion miles needed

per code release!

Key ideas of this talk

Robustness Risk

Build models with guaranteed performance | Find failure modes and quantify the
over uncertainty sets probability of failure

minmax e f(0; X)] Po(f(X) <)

« With small P, can we solve this quickly? * Why is this the right problem?

« What about when P is large/unknown? How do we solve it quickly?

Techniques for rare-event simulation

O’Kelly*, Sinha*, Namkoong®*, Duchi, Tedrake. NeurlPS 2018.
Sinha*, O’Kelly*, Duchi, Tedrake. Under review.

Warm up: cross-entropy method

Goal: find a good parametric importance-sampling distribution

* EXxplore: draw samples from current sampling distribution

» EXxploit: update sampling distribution

i
i
Original I
Distribution . Learned
: sampler
PO i PQ

gFailure Region

[Rubinstein & Kroese 2004, Asmussen & Glynn 2007]

Warm up: cross-entropy method

Goal: find a good parametric importance-sampling distribution

* EXxplore: draw samples from current sampling distribution

» EXxploit: update sampling distribution

Py = N(0,1)

Warm up: cross-entropy method

Goal: find a good parametric importance-sampling distribution

* EXxplore: draw samples from current sampling distribution

» EXxploit: update sampling distribution

8r . .
Po A (O I) : : : | &— Region of interest
’ 6 i - -
f(x) min () e o
= —6 - e
ol 8:: ":? ' S B B B N N . f(x‘) — O
OL::Q\ s PToF0 oo L
0 | o ---------lf(a’j)_Q

Warm up: cross-entropy method

Goal: find a good parametric importance-sampling distribution

* EXxplore: draw samples from current sampling distribution

» EXxploit: update sampling distribution

Lower quantile of

4— sorted samples

Warm up: cross-entropy method

Goal: find a good parametric importance-sampling distribution

* EXxplore: draw samples from current sampling distribution

» EXxploit: update sampling distribution

Sampling family: A'(6,1) .

Warm up: cross-entropy method

Goal: find a good parametric importance-sampling distribution

* EXxplore: draw samples from current sampling distribution

» EXxploit: update sampling distribution

Sampling family: A'(6,1) .

Warm up: cross-entropy method

Goal: find a good parametric importance-sampling distribution

* EXxplore: draw samples from current sampling distribution

» EXxploit: update sampling distribution

Sampling family: A'(60,1) 2} .

Warm up: cross-entropy method

Goal: find a good parametric importance-sampling distribution

* EXxplore: draw samples from current sampling distribution

* Exploit: update sampling distribution

Sampling family: N/ (6,1) 2

Warm up: cross-entropy method

Downside: need to know a good parametrization of samplers

flz) = — min(|$[1] § x[z])

| _

Warm up: cross-entropy method

Downside: need to know a good parametrization of samplers

10

N (0, 1) family fails catastrophically!

Warm up 2: adaptive multilevel splitting (AMS)

Goal: decompose rare probability into a ladder of non-rare probabilities
* EXxploit: throw away worst samples and rejuvenate from the remaining good ones

* Explore: MCMC to sample from updated level

[Guyader et al. 2011, Bréhier et al. 2015, Web et al. 2018, Norden et al. 2020]

Warm up 2: adaptive multilevel splitting (AMS)

Goal: decompose rare probability into a ladder of non-rare probabilities
* EXxploit: throw away worst samples and rejuvenate from the remaining good ones

* Explore: MCMC to sample from updated level

Po(f(X) <) = HIP(f(X) < Li|f(X) < Lg—1)

Warm up 2: adaptive multilevel splitting (AMS)

Goal: decompose rare probability into a ladder of non-rare probabilities
* EXxploit: throw away worst samples and rejuvenate from the remaining good ones

* Explore: MCMC to sample from updated level

Po(f(X) <) = HIP(f(X) < Li|f(X) < Lg—1)

Q
Empirical (1 o 5)'quanti|e *’ L
This is level L1 4t

Warm up 2: adaptive multilevel splitting (AMS)

Goal: decompose rare probability into a ladder of non-rare probabilities
* EXxploit: throw away worst samples and rejuvenate from the remaining good ones

* Explore: MCMC to sample from updated level

Po(f(X) <) = HIP(f(X) < Li|f(X) < Lg—1)

R -
Empirical (1 o 5)'quanti|e §6> : L
1
1

4

Warm up 2: adaptive multilevel splitting (AMS)

Goal: decompose rare probability into a ladder of non-rare probabilities
* EXxploit: throw away worst samples and rejuvenate from the remaining good ones

* Explore: MCMC to sample from updated level

Po(f(X) <) = HIP(f(X) < Li|f(X) < Lg—1)

R -
Empirical (1 o 5)'quanti|e §6> : L
1
1

4
Rejuvenate

and explore

Warm up 2: adaptive multilevel splitting (AMS)

Goal: decompose rare probability into a ladder of non-rare probabilities
* EXxploit: throw away worst samples and rejuvenate from the remaining good ones

* Explore: MCMC to sample from updated level

K

Po(f(X) <) = HIP’(f(X) < Li|f(X) < Lg—1)

Warm up 2: adaptive multilevel splitting (AMS)

Goal: decompose rare probability into a ladder of non-rare probabilities
* EXxploit: throw away worst samples and rejuvenate from the remaining good ones

* Explore: MCMC to sample from updated level

Po(f(X) <) = HIP(f(X) < Li|f(X) < Lg—1)

Warm up 2: adaptive multilevel splitting (AMS)

Goal: decompose rare probability into a ladder of non-rare probabilities
* EXxploit: throw away worst samples and rejuvenate from the remaining good ones

* Explore: MCMC to sample from updated level

K

Po(f(X) <) = HIP’(f(X) < Li|f(X) < Lg—1)

Warm up 2: adaptive multilevel splitting (AMS)

Goal: decompose rare probability into a ladder of non-rare probabilities
* EXxploit: throw away worst samples and rejuvenate from the remaining good ones

* Explore: MCMC to sample from updated level

Po(f(X) <) = H P(f(X) < Lg| f(X) < Lg-1)

Random stopping time K
A K
Py = (1 _ 5)

Warm up 2: adaptive multilevel splitting (AMS

Upside Downside

No need to come up with parametric Doesn’t use gradient information V f(«x
distributions

Challenge: intermediate distributions don'’t
depend smoothly on f

Our approach

A smoother ladder towards failure

pi(x) := po(x) exp (=B [f(z) —7],)

exponential barrier

7, /X o ()

» Contrast with AMS pr(x) := po(x) I{f(z) < L}

hard barrier

Our approach

A smoother ladder towards failure

pr(x) == po(x) exp (—5k Sf(z) — ”Y]Jr)» Lk 1= /ka(x)dx

exponential barrier

Zr po(X)

1) <], ZE =11 2

Zo pr(X)

We will estimate these

Our approach

* A smoother ladder towards failure
» Exploit: determine the next 5 using current samples (kth distribution)
* Explore + optimize: utilize gradient-based MCMC to sample from (k+1)st distribution

» Estimate: compute 7., /7 via bridge sampling

Our approach

* A smoother ladder towards failure
» Exploit: determine the next 5 using current samples (kth distribution)
* Explore + optimize: utilize gradient-based MCMC to sample from (k+1)st distribution

» Estimate: compute 7., /7 via bridge sampling

Choose B 1 such that

L+1
A

(quasiconvex problem)

N6 b oo eding

Our approach

* A smoother ladder towards failure
» Exploit: determine the next 5 using current samples (kth distribution)
* Explore + optimize: utilize gradient-based MCMC to sample from (k+1)st distribution

» Estimate: compute 7., /7 via bridge sampling

Explore +

‘:'. ':::' O
() o .
I O An® o0 '._t:'
o 00V . .7 00 N Yo Q A
~ QO _‘._.\PJ S N N) _//' o~ S - QO
o O U S Nl O N
s o Gl MR P “. L 4..4 Yy Oq
O 8 Q. ORI i X ~ O
(L o). s " N o) ar el ; .
< O ; Sy = - [S A > O
[\NY OB ‘? 's : ¥ j' L1 OO N
aer, . * @y - " "
(S . G) ¢ " (&)
o 4 " N - S O ~ \/
! ($) A s .: ' - .\' —d
) v e N Y E\ (J‘I' y
)) " . \ ;)
i)
(&)) ."‘.\‘.‘ ‘»’s‘ ~ N»
ys (e ., ". v o b
&) 0w - < e (YN
) cll « oK.
O ‘ N S AR
o ’ £ . 23S)
550 TR8 BP0
[) . = 2 o R ‘Iﬂ'to:lf(l
&) 3 cy ,3 b:b‘. . : L," v, 3
COf < 2 \" <) -|‘<'.‘(* Y D e
[&+ o AL, \/
‘ ‘5"‘"' c" ¥ 3 g - o - A) 3 9]
(~ 5 H‘A‘ " - . "’) ™M
\ « . ‘*4. » L

Hamiltonian Monte Carlo (HMC)

» Treat — log pi as a physical energy potential and simulate the dynamics (ODESs)

k

—\VWW— m

Gaussian distribution Spring-mass system

* Automatic tradeoff between exploration and optimization

Vlog pi(x) = Vog po(x) =Bk Vf(x)I{f(x) > v}

exploration optimization

Our approach

* A smoother ladder towards failure
» Exploit: determine the next 5 using current samples (kth distribution)
* Explore + optimize: utilize gradient-based MCMC to sample from (k+1)st distribution

» Estimate: compute 7., /7 via bridge sampling

Explore +

‘:'. ':::' O
() o .
I O An® o0 '._t:'
o 00V . .7 00 N Yo Q A
~ QO _‘._.\PJ S N N) _//' o~ S - QO
o O U S Nl O N
s o Gl MR P “. L 4..4 Yy Oq
O 8 Q. ORI i X ~ O
(L o). s " N o) ar el ; .
< O ; Sy = - [S A > O
[\NY OB ‘? 's : ¥ j' L1 OO N
aer, . * @y - " "
(S . G) ¢ " (&)
o 4 " N - S O ~ \/
! ($) A s .: ' - .\' —d
) v e N Y E\ (J‘I' y
)) " . \ ;)
i)
(&)) ."‘.\‘.‘ ‘»’s‘ ~ N»
ys (e ., ". v o b
&) 0w - < e (YN
) cll « oK.
O ‘ N S AR
o ’ £ . 23S)
550 TR8 BP0
[) . = 2 o R ‘Iﬂ'to:lf(l
&) 3 cy ,3 b:b‘. . : L," v, 3
COf < 2 \" <) -|‘<'.‘(* Y D e
[&+ o AL, \/
‘ ‘5"‘"' c" ¥ 3 g - o - A) 3 9]
(~ 5 H‘A‘ " - . "’) ™M
\ « . ‘*4. » L

Our approach

* A smoother ladder towards failure
» Exploit: determine the next 5 using current samples (kth distribution)
* Explore + optimize: utilize gradient-based MCMC to sample from (k+1)st distribution

» Estimate: compute 7., /7 via bridge sampling

Our approach

* A smoother ladder towards failure
» Exploit: determine the next 5 using current samples (kth distribution)
* Explore + optimize: utilize gradient-based MCMC to sample from (k+1)st distribution

» Estimate: compute 7., /7 via bridge sampling

Use both sets of samples to | -
compute an accurate | |
estimate of Zy11 /2

Bridge sampling
» Use samples from neighboring distributions to estimate their ratio Z;11/Zx

Ziir _ ZP)72
Zi — ZPZiy

Use an auxiliary “bridge” distribution

[Bennett 1976, Meng & Wong 1996]

Bridge sampling
» Use samples from neighboring distributions to estimate their ratio Z;11/Zx

Ziir _ ZP)72
Zi — ZPZiy

Use an auxiliary “bridge” distribution

Problem:

Error depends on
distance between
distributions

[Bennett 1976, Meng & Wong 1996]

Neural warping

* Error of bridge-sampling estimate depends on the distance between distributions

* Transform the space so they are closer (“warp” the space between them)

» Classical technigues: mean shift, affine scaling [Voter 1985, Meng & Schilling 2002]
* Modern ML toolbox: normalizing flows [Papamakarios et al. 2019]
* Bonus: warping helps HMC [Girolami & Calderhead 2011, Hoffman et al. 2019]

Our approach

* A smoother ladder towards failure
» Exploit: determine the next 5 using current samples (kth distribution)
* Explore + optimize: utilize gradient-based MCMC to sample from (k+1)st distribution

» Estimate: compute 7., /7 via bridge sampling

Our approach

* A smoother ladder towards failure
» Exploit: determine the next 5 using current samples (kth distribution)
* Explore + optimize: utilize gradient-based MCMC to sample from (k+1)st distribution

» Estimate: compute 7., /7 via bridge sampling

Our approach

* A smoother ladder towards failure
» Exploit: determine the next 5 using current samples (kth distribution)
* Explore + optimize: utilize gradient-based MCMC to sample from (k+1)st distribution

» Estimate: compute 7., /7 via bridge sampling

Our approach

* A smoother ladder towards failure
» Exploit: determine the next 5 using current samples (kth distribution)
* Explore + optimize: utilize gradient-based MCMC to sample from (k+1)st distribution

» Estimate: compute 7., /7 via bridge sampling

Our approach

* A smoother |ladder towards failure
« Exploit: determine the next 5 using current samples (kth distribution
* Explore + optimize: utilize gradient-based MCMC to sample from (k+1)st distribution

» Estimate: compute 7., /7 via bridge sampling

Our approach

* A smoother |ladder towards failure
« Exploit: determine the next 5 using current samples (kth distribution
* Explore + optimize: utilize gradient-based MCMC to sample from (k+1)st distribution

» Estimate: compute 7., /7 via bridge sampling

Our approach

* A smoother |ladder towards failure
« Exploit: determine the next 5 using current samples (kth distribution
* Explore + optimize: utilize gradient-based MCMC to sample from (k+1)st distribution

» Estimate: compute 7., /7 via bridge sampling

Random stopping time K

. 4h
P~y R o't

Performance guarantees

» Theorem: Number of iterations K — logp~/loga and E|(p~/p- — 1)°] < 2KD/N

- D depends on (warped) distance between consecutive distributions

 Computational cost is O(K N) simulations

Cost Error
Neural bridge sampling N log(l/pv) lOg(]l\f/pW)
N 1
Monte Carlo pWN

Performance guarantees
1
p~ log(p)~

* QOverall efficiency gain of O () over Monte Carlo

* Relative advantage scales with rarity

Time Error
Neural bridge sampling N log(l/pv) lOg(]l\f/pW)
1
Monte Carlo N pWN

Experiments: rocket design

* Vertical landing of an orbital-class rocket (e.g. SpaceX Falcon 9)
» I is the model of wind gusts during flight (100 dimensions)

 f(z) is the distance from the center of the launchpad at landing

Wind Profile
/ \4
Re-entry Burn » Rocket1: Boosters capable of 15%
- main thrust
Grid Fins = | -
| - Rocket2: Boosters capable of 10%
< main thrust
Landing Burn '\‘ <
. N\ s
amiing Sogs Depioy \ ‘: Bigger boosters are safer but
Soft Touch Down

~J 4 mean smaller payloads

Landing Barge et

Experiments: rocket design

* Vertical landing of an orbital-class rocket (e.g. SpaceX Falcon 9)
» I is the model of wind gusts during flight (100 dimensions)

 f(z) is the distance from the center of the launchpad at landing

10_25 .

< 103
MC/NB use 100,000 samples _.%

=
True is MC with 50M samples z 104

2

E

qw

S 107

A,

[
S
@)}

10 11 12 13
—Ytest (meteTS)

14

15

Experiments: rocket design

* Vertical landing of an orbital-class rocket (e.g. what SpaceX does)
» I is the model of wind gusts during flight (100 dimensions)

 f(z) is the distance from the center of the launchpad at landing

PCA visualization of failure modes

40 @

« Rocketl
« Rocket2

Medium altitude gust
-

High altitude gust

Experiments: OpenAl CarRacing

» Challenging environment (pixels to actions)
» I is the model for track generation (24 dimensions)

 f(z) is the score achieved

Compare 2 SOTA policies:

Average Score
(over 2M runs)

-
2
O
=
o
.r »
Z
A
-
Y
2
.

AttentionAgent 003 + 49
[Tang et al. 2020] o

1@

3

WorldModel
[Ha & Schmidhuber 2018] 899 £ 46

Experiments: OpenAl CarRacing

* Challenging environment (pixels to actions)

» I is the model for track generation (24 dimensions)

 f(z) is the score achieved

=
2
O
)
-)
o

. A SBR as WO

ERLN

(S (S (S
S < S
Ln =~ ('S

Probability estimate p,,

[
S
@)

Atten

tionAgentRac

True is MC with only 2M samples

—
—
-
-
#—
- -

—-—
__-""
—
-
- -

-
-ll'-_
.

- -
’-1-"
#ﬂ
-

’}/t.e st

- _f"
¢ =72 -
WorldModelRacer MC
—NB
- = True
160 180 200 220 240 260

Experiments

Relative mean-square error E{(p- /p, — 1)°] over 10 trials

Synthetic MountainCar Rocket1 Rocket2 AttentionAgentRacer WorldModelRacer
MC 1.1821 0.2410 1.1039 0.0865 1.0866 0.9508
AMS 0.0162 0.5424 0.0325 0.0151 1.0211 0.8177
B 0.0514 0.3856 0.0129 0.0323 0.9030 0.7837
NB 0.0051 0.0945 0.0102 0.0078 0.2285 0.1218
D~y 3.6-107° 1.6-107°> 2.3.-107° 24-100* =~25-107° ~9.5-10°

Neural bridge sampling outperforms other methods

Key ideas of this talk

Robustness Risk

Build models with guaranteed performance | Find failure modes and quantify the
over uncertainty sets probability of failure

minmax e f(0; X)] Po(f(X) <)

« With small P, can we solve this quickly? * Why is this the right problem?

« What about when P is large/unknown? How do we solve it quickly?

Future directions

Automating the development process

™\

Find failures

Build stronger models

“~__

Future directions

Model governance more broadly

™\

Future directions

Model governance more broadly

™\

B 8 i

Safety Privacy Fairness

e

Security Sustainability Efficiency

