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Motivation

* We are starting to apply machine learning to high-stakes decision-making
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* The standard paradigms of ML aren’t enough in safety-critical applications

- Development: minimize average loss over a nominal training dataset

- Testing: check average performance over a test dataset

* New paradigms for handling uncertainty
- Development: build robustness against uncertainties

- Testing: quantify risk (likelihood and severity) of failures



Key ideas of this talk

Robustness Risk

Build models with guaranteed performance | Find failure modes and quantify the
over uncertainty sets probability of failure
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« With small P, can we solve this quickly? * Why is this the right problem?
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Certifiable robustness against adversarial attacks

Sinha*, Namkoong*, Duchi. ICLR 2018.
Sinha*, Namkoong®, Volpi, Duchi. Under review.




Certifiable robustness against adversarial attacks
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We want to increase the robustness of ML systems to adversarial attacks (small P)



Current approaches

» Adversarial training heuristics: fast but no theoretical guarantees of robustness

- Goodfellow et al. 2015, Kurakin et al. 2016, Papernot et al. 2016, He et al. 2017,
Carlini & Wagner 2017, Tramer et al. 2017, Madry et al. 2018, etc.

* Formal verification: rigorous guarantees but slow

- Huang et al. 2017, Katz et al. 2017, Kolter & Wong 2017, Tjeng & Tedrake 2017,
Raghunathan et al. 2018

Our goal: balance efficiency with robustness guarantees



Our work: principled adversarial training

- Setup: model/network weights ¢ € O, feature vector X, label Y, and loss ¢(0; X, Y)

Overall idea: replace ¢(6; X,Y’) with robust surrogate ¢~ (6; X,Y)

 For moderate levels of desired robustness and smooth losses /:
- Provably fast convergence, 5-10x as fast as ERM

- Statistical guarantees for performance on (perturbations to) the test set



Distributionally robust optimization (DRO)

* Goal: robustness to perturbations in a Wasserstein ball

» Generally intractable for arbitrary p

7 N\

[Esfahani & Kuhn 2015; Shafieezadeh-Abadeh et al. 2015; Blanchet et al. 2016, Lee & Raginsky 2017]
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Distributionally robust optimization (DRO)

» Lagrangian relaxation and its dual formulation

- More robustness < larger p < smaller 7y

minimize max{ Coll(0; X,Y)] —vD.(Q, Py) } —
HcO Q e —’
penalty

minimize Ep, [0~ (0; X,Y)]

0co
where %(9; T,1y) ;= max {5(9; xlvy) — ”YHCU/ — xHQ }
x'eX \——— ——
penalty

» Compare to ERM: minimizegco Ep, [£(0; X,Y)

[Blanchet et al. 2016]



Solving the optimization problem
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Solving the optimization problem
¢’Y(6’7 L0, y()) = glea)i'( {6(97 L, y()) o W/Hx o ZCOHQ}

Key insight: (z,y) — £(0;x,vy) — ||z — o]||* is strongly concave for smooth ¢ and
large enough -y

» Curvature in || - ||* dwarfs out non-concavity of £(6; -)
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Deep nets with smooth activations (ELUs, sigmoid, etc.) are smooth



Optimization guarantees

Algorithm: SGD for ming Ep, |¢~(60; X, Y )]

e Sample (z%,y") ~ P,

e Compute adversarial example:

(approximate) maximizer 7t of £(6; z, y*) — ||z — x|

o Ol 9t — Vel (0% 7, yt)

S

» For large enough v we can compute 7! in 10-20 gradient ascent steps

* Theorem: converges at standard nonconvex-SGD rate



Certificate of robustness

» Algorithm generalizes: we learn to prevent attacks on the test set

» Owrm = output of Algorithm, Comp, = size of ©, C' = problem-dependent constant,
P,, = empirical training distribution

Theorem (Robustness Certificate)
With high probabillity, for any p > 0

Comp

A

\

U X, Y)] < A Owrm; X,Y
QtDcI(%?a:}lgo)Sp Q[Z(QWRM’ ’ )] VP T Py [¢7( WRM, A, )]"‘C
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MNIST classification

* Compare our method (WRM) with fast-gradient (FGM), iterated FGM (IFGM), and
projected gradient method (PGM)

ERM
IFGM
FGM

D> PCM

107 I WRM
0) 0.65 011 O.|15 012 O.|25 0 O.I()S 011 O.|15 012
€adv/C2 €adv/Coxo
Test error vs. €,4. for Test error vs. €,4. for
PGM | - ||» attack PGM || - || attack

[Goodfellow et al. 2015, Kurakin et al. 2016, Madry et al. 2017]



When the model misclassifies

* Minimum perturbation forcing WRM to misclassity is perceptible

Original

IFGM




Key ideas of this talk

Robustness Risk

Build models with guaranteed performance | Find failure modes and quantify the
over uncertainty sets probability of failure
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« With small P, can we solve this quickly? * Why is this the right problem?

» What about when P is large/unknown?  How do we solve it quickly?



Balancing safety & performance in high-uncertainty regimes

Sinha*, O’Kelly*, Zheng*, Mangharam, Duchi, Tedrake. ICML 2020.




Balancing safety & performance in high-uncertainty regimes

* When P is large/unknown, balance is
critical:

- Conservativeness leads to poor
performance

- Aggressiveness Iis dangerous

* Autonomous racing is an extreme limit of
autonomous driving

- Strategies are secret

- Crashing is expensive/dangerous
(and makes winning hard)




Robust reinforcement learning

minimize E \E
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Robust reinforcement learning

Coe )\t T t
minimize Pﬂ%}%; [C(O( ))]

\ If we knew the opponent’s behavior,
we wouldn’t need the inner max

 State-action transition probabilities P, observations o, discount factor A, cost c

» Overall idea: learn a useful parametrization for P and then proceed as before
- Offline population synthesis: self-play to learn P, a population of good racers

- Online robust planning: robust belief-space planning against an opponent



Related work

* Robust RL/control
- Robust MDP [Nilim & El Ghaoui 2005]
- POMDP [Kaelbling et al. 1998]
- Adversarial RL [Mandlekar et al. 2017, Pinto et al. 2017]

» Belief-space planning [Van Den Berg et al. 2011, Galceran et al. 2015, Kochenderfer
2019]

 DRO [Namkoong & Duchi 2017]



Offline population synthesis

Goal: generate a diverse set of competitive agent behaviors

Hierarchical Planner

Mission Planner
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differentiable cost weights «



Offline population synthesis
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Offline population synthesis

Goal: generate a diverse set of competitive agent behaviors

Hierarchical Planner
Mission Planner

! b
Sensors & | Behavioral
Perception Planner

4

Local Planner
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Policy parametrization Search algorithm Diverse population of agents
* (Goal generator: neural net  Employs self-play to * Described by thelir
(IAF) weights 6 generate competitive parameters (x,6)
agents

* (Goal evaluator: non-
differentiable cost weights «



Step 1: initialize populations

Temperature

* Builds upon parallel tempering [Marinari
& Parisi 1992]

Initialize B1(1)

* |nitialize several “baths” of configurations
(x,0)

Only accepts changes to  Accepts any configuration
configurations which change regardless of
Improve performance performance

Iteration



Step 2: self-play (vertical MCMC)

Temperature

* Explore new proposals for x

Initialize B1(#)

- — - ——  — - o e b T - — -

Vertical (3 |(z‘u’ 35(t) : B4(t) 34(t) Sr(t)
» Evaluate each proposal by a race : ]

between the old and new configurations
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Simulations happen asynchronously in parallel

Iteration



Step 2: self-play (vertical MCMC)

* Explore new proposals for x

» Evaluate each proposal by a race
between the old and new configurations

Temperature

Initialize B1(#)

- — " —— — . o b — —— - — -

Vertical z3|(f|’ 35(t) : Ba(t)

o [ . o
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Simulations happen asynchronously in parallel

Iteration




Step 3: differentiable parameter update

Temperature

e Optimize 6 (neural network weights)

-.......-..-...-------------------_---___-----.-,, o o b — -

——— - — - —— - - - — —— - ...------.---____-----------..--..-...----....--..--------..--.-..--.qo-~---------a—-—- --------------------

Iteration




Step 4: configuration swaps (horizontal MCMC)

Temperature

* Propose random swaps of configurations
between adjacent baths

..................... — - — S

Vertical (3(t) | a(t) B4(t) : 34(1) : Arit)

* Efficient way to encourage mixing i ? i(} i 2% é?
because no new simulations needed —
Horizontal

Iteration

Poorly performing High-performing
configs get demoted configs get promoted



Step 5: update temperatures (annealing)

Temperature

» Adaptive annealing scheme: adjust
temperatures by annealing swap-

acceptance probability """" rtical ' """"""
- Convex optimization problem oosfe ) | Latees TN R

- - —— — -

Crucial in our setting because we don’t
have any prior knowledge of good race
times (no priors for good temperatures)

Iteration
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End result: diverse population of opponent prototypes

Temperature

Initialize B (t)
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Distributionally robust planning

» When racing against an opponent, we maintain a belief vector w(t) of their behavior
over the learned population of prototypes

‘P is an uncertainty ball around this belief (X2-divergence)

Draw candidate goal Predict opponent Choose goal
behavior



Distributionally robust planning
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Distributionally robust planning

cs(t; 9) == ) A T'E[c(o(s); g)]

s>t

goal g

Opponent Model 2

- \Opponent Model 3
Trajectory

Opponent-vehicle
Ego-vehicle

Opponent Model 1 Opponent Model 3 M.d-’/_‘f\

Belief space




Distributionally robust planning

max
q:3>2; wi(55)2<p+1

Opponent Model 2

Distributionally-robust

operating point
Current estimate of

opponent probabilities

w(t)

v ball

Opponent Model 1 Opponent Model 3

Belief space

Z gici(t; g)

(/

goal g

trajectories

Opponent-vehicle
Ego-vehicle

ey



Distributionally robust planning

Repeat this for every motion planning goal and select the goal with the lowest robust cost

max > qici(t; g)

3, wi(L)2<p 41 <

ﬁ




Belief updates (adaptivity)

» Update beliefs using the observed history of the opponent
- Modified version of EXP3 [Auer et al. 2002]

t Model 1 pponent Mo Opponent Model 1 Opponent Model 3

"\ ssible opponent-vehicle
t]ctl

Opponent-vehicle
Ego- hI




Real-world experiments

Power Distribution Board

Planar Lidar

Electronic Speed Controller

. I', = F b

Nvidia Jetson Xavier

-

with
Ackermann Steering

1/10 Scale Chassis [ e ' K 4 : Wm"”’W"'mﬁ'ﬂml"




Balancing safety and performance

Larger uncertainty sets (larger p) increase safety but decrease performance

% of iTTC values Win-rate
Agent < 0.5s Agent Non-adaptive
n/N,, = 0.001 7.86 + 0.90 p/N, =0.001 ]0.593 4+ 0.025
p/N,, = 0.025 6.46+ 0.78 p/N, = 0.025 0.5934+ 0.025
p/N,, = 0.2 4.75+ 0.65 p/Ny, = 0.2 0.538+ 0.025
po/N, = 0.4 5.41+ 0.74 p/N, = 0.4 0.5034+ 0.025
o/N,, = 0.75 5.50+ 0.82 p/N, = 0.75 0.5134 0.025
p/NW — 1.0 5.76 + 0.84 p/NW —= 1.0 0.498+ 0.025

Increased safety with p Decreased win-rate with p



Balancing safety and performance

Online adaptation regains the performance of aggressive strategies:
Safe when uncertain, aggressive once the opponent is identified

Win-rate Win-rate
Agent Non-adaptive Adaptive p-value
p/NW — (.001 0.593 = 0.025 0.588+ 0.025 0.84
p/N, = 0.025 0.593+ 0.025 0.600+ 0.024 0.77
p/N, = 0.2 0.538+ 0.025 0.588+ 0.025 0.045
p/N, = 0.4 0.503+ 0.025 0.573+ 0.025 0.0093
p/N, = 0.75 0.513+ 0.025 0.593+ 0.025 0.0013

p/N,, = 1.0 0.4984 0.025 0.590 == 0.025| 0.00024
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The risk-based framework

O’Kelly*, Sinha*, Namkoong®*, Duchi, Tedrake. NeurlPS 2018.
O’Kelly*, Sinha*, Norden”, Namkoong*. NeurlPS ML4H 2018.
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The risk-based framework
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» Certify a level of reliability

» Work with a blackbox algorithm



Related work

* Formal verification [Kwiatkowska et al. 2011, Althoff and Dolan 2014, Seshia et al.
2015, O’Kelly et al. 2016]

» Falsification [Abbas and Fainekos 2011, Tuncali et al. 2016, DeCastro et al. 2018]

* Probabilistic falsification/Adaptive stress testing [Koren et al. 2018, Lee et al. 2018]



Problems with verification

* A “correctness” specification is
subjective

H2NEWS.COMaL-

* |ntractable

* Requires white-box model




Problems with falsification

* Not designed for coverage




The risk-based framework

- Goal: probability of dangerous event p- := Po(f(X) < )

* Base distribution of behavior X ~ £,

* Objective function (i.e. safety metric) f : X — R



The risk-based framework

Don’t just find
one spot

* Coverage of failure modes

+ 00000
000000 0
r 0000000

r 0000000 .
+ 0000000 .
0000000

¢ 00000 .

* Prioritization by likelihood

Prioritize these
failures

/

| / Not these




Components of the risk-based framework

]
Iy

Simulation Generative models Search algorithm




Search

py = Po(f(X) <)

 Random search (aka naive Monte Carlo)

N
1 —
b= I <7} Bl /oy~ =
1=1

Estimate Error of estimate

» Rule of thumb: need at least 100/ p~ samples for accurate estimate (error bars < 10%)



Search

Failure rate (failures per 100 million miles)
[Kalra & Paddock 2016]

2 g 3 2
m o

(suol|IW) UBALIP 3G O3 PapasU S

Miles Needed to Demonstrate Failure Rates to a Particular Degree of Precision

100 billion miles needed

per code release!
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« With small P, can we solve this quickly? * Why is this the right problem?

« What about when P is large/unknown?  How do we solve it quickly?



Techniques for rare-event simulation

O’Kelly*, Sinha*, Namkoong®*, Duchi, Tedrake. NeurlPS 2018.
Sinha*, O’Kelly*, Duchi, Tedrake. Under review.




Warm up: cross-entropy method

Goal: find a good parametric importance-sampling distribution

* EXxplore: draw samples from current sampling distribution

» EXxploit: update sampling distribution

i
i
Original I
Distribution . Learned
: sampler
PO i PQ

gFailure Region

[Rubinstein & Kroese 2004, Asmussen & Glynn 2007]
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Py = N(0,1)




Warm up: cross-entropy method

Goal: find a good parametric importance-sampling distribution

* EXxplore: draw samples from current sampling distribution

» EXxploit: update sampling distribution

8r . .
Po A (O I) : : : | &— Region of interest
’ 6 i - -
f(x) min () e o
= —6 - e
ol 8:: ":? ' S B B B N N . f(x‘) — O
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» EXxploit: update sampling distribution

Lower quantile of

4— sorted samples
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Warm up: cross-entropy method

Goal: find a good parametric importance-sampling distribution

* EXxplore: draw samples from current sampling distribution

* Exploit: update sampling distribution

Sampling family: N/ (6,1) 2




Warm up: cross-entropy method

Downside: need to know a good parametrization of samplers

flz) = — min(|$[1] § x[z])

| _




Warm up: cross-entropy method

Downside: need to know a good parametrization of samplers

10

N (0, 1) family fails catastrophically!



Warm up 2: adaptive multilevel splitting (AMS)

Goal: decompose rare probability into a ladder of non-rare probabilities
* EXxploit: throw away worst samples and rejuvenate from the remaining good ones

* Explore: MCMC to sample from updated level

[Guyader et al. 2011, Bréhier et al. 2015, Web et al. 2018, Norden et al. 2020]
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Warm up 2: adaptive multilevel splitting (AMS)

Goal: decompose rare probability into a ladder of non-rare probabilities
* EXxploit: throw away worst samples and rejuvenate from the remaining good ones

* Explore: MCMC to sample from updated level

Po(f(X) <) = H P(f(X) < Lg| f(X) < Lg-1)

Random stopping time K
A K
Py = (1 _ 5)




Warm up 2: adaptive multilevel splitting (AMS

Upside Downside

No need to come up with parametric Doesn’t use gradient information V f(«x
distributions

Challenge: intermediate distributions don'’t
depend smoothly on f



Our approach

A smoother ladder towards failure

pi(x) := po(x) exp (=B [f(z) —7],)

exponential barrier

7, /X o ()

» Contrast with AMS pr(x) := po(x) I{f(z) < L}

hard barrier



Our approach

A smoother ladder towards failure

pr(x) == po(x) exp (—5k Sf(z) — ”Y]Jr)» Lk 1= /ka(x)dx

exponential barrier

Zr po(X)

1) <], ZE =11 2

Zo pr(X)

We will estimate these
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Choose B 1 such that

L+1
A

(quasiconvex problem)

N6 b oo eding
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Hamiltonian Monte Carlo (HMC)

» Treat — log pi as a physical energy potential and simulate the dynamics (ODESs)

k

—\VWW— m

Gaussian distribution Spring-mass system

* Automatic tradeoff between exploration and optimization

Vlog pi(x) = Vog po(x) =Bk Vf(x)I{f(x) > v}

exploration optimization
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Our approach

* A smoother ladder towards failure
» Exploit: determine the next 5 using current samples (kth distribution)
* Explore + optimize: utilize gradient-based MCMC to sample from (k+1)st distribution

» Estimate: compute 7., /7 via bridge sampling

Use both sets of samples to | -
compute an accurate | |
estimate of Zy11 /2




Bridge sampling
» Use samples from neighboring distributions to estimate their ratio Z;11/Zx

Ziir _ ZP )72
Zi — ZPZiy

Use an auxiliary “bridge” distribution

[Bennett 1976, Meng & Wong 1996]



Bridge sampling
» Use samples from neighboring distributions to estimate their ratio Z;11/Zx

Ziir _ ZP )72
Zi — ZPZiy

Use an auxiliary “bridge” distribution

Problem:

Error depends on
distance between
distributions

[Bennett 1976, Meng & Wong 1996]



Neural warping

* Error of bridge-sampling estimate depends on the distance between distributions

* Transform the space so they are closer (“warp” the space between them)

» Classical technigues: mean shift, affine scaling [Voter 1985, Meng & Schilling 2002]
* Modern ML toolbox: normalizing flows [Papamakarios et al. 2019]
* Bonus: warping helps HMC [Girolami & Calderhead 2011, Hoffman et al. 2019]
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Our approach

* A smoother |ladder towards failure
« Exploit: determine the next 5 using current samples (kth distribution
* Explore + optimize: utilize gradient-based MCMC to sample from (k+1)st distribution

» Estimate: compute 7., /7 via bridge sampling

Random stopping time K

. 4h
P~y R o't




Performance guarantees

» Theorem: Number of iterations K — logp~/loga and E|(p~/p- — 1)°] < 2KD/N

- D depends on (warped) distance between consecutive distributions

 Computational cost is O(K N ) simulations

Cost Error
Neural bridge sampling N log(l/pv) lOg(]l\f/pW)
N 1
Monte Carlo pWN




Performance guarantees
1
p~ log(p )~

* QOverall efficiency gain of O ( ) over Monte Carlo

* Relative advantage scales with rarity

Time Error
Neural bridge sampling N log(l/pv) lOg(]l\f/pW)
1
Monte Carlo N pWN




Experiments: rocket design

* Vertical landing of an orbital-class rocket (e.g. SpaceX Falcon 9)
» I is the model of wind gusts during flight (100 dimensions)

 f(z) is the distance from the center of the launchpad at landing

Wind Profile
/ \4
Re-entry Burn » Rocket1: Boosters capable of 15%
- main thrust
Grid Fins = | -
| - Rocket2: Boosters capable of 10%
< main thrust
Landing Burn '\‘ <
. N\ s
amiing Sogs Depioy \ ‘: Bigger boosters are safer but
Soft Touch Down

~J 4 mean smaller payloads

Landing Barge et



Experiments: rocket design

* Vertical landing of an orbital-class rocket (e.g. SpaceX Falcon 9)
» I is the model of wind gusts during flight (100 dimensions)

 f(z) is the distance from the center of the launchpad at landing
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Experiments: rocket design

* Vertical landing of an orbital-class rocket (e.g. what SpaceX does)
» I is the model of wind gusts during flight (100 dimensions)

 f(z) is the distance from the center of the launchpad at landing

PCA visualization of failure modes

40 @

« Rocketl
« Rocket2

Medium altitude gust
-

High altitude gust



Experiments: OpenAl CarRacing

» Challenging environment (pixels to actions)
» I is the model for track generation (24 dimensions)

 f(z) is the score achieved

Compare 2 SOTA policies:

Average Score
(over 2M runs)
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Experiments: OpenAl CarRacing

* Challenging environment (pixels to actions)

» I is the model for track generation (24 dimensions)

 f(z) is the score achieved
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Experiments

Relative mean-square error E{(p- /p, — 1)°] over 10 trials

Synthetic MountainCar Rocket1 Rocket2 AttentionAgentRacer WorldModelRacer
MC 1.1821 0.2410 1.1039 0.0865 1.0866 0.9508
AMS 0.0162 0.5424 0.0325 0.0151 1.0211 0.8177
B 0.0514 0.3856 0.0129 0.0323 0.9030 0.7837
NB 0.0051 0.0945 0.0102 0.0078 0.2285 0.1218
D~y 3.6-107° 1.6-107°> 2.3.-107° 24-100* =~25-107° ~9.5-10°

Neural bridge sampling outperforms other methods



Key ideas of this talk

Robustness Risk

Build models with guaranteed performance | Find failure modes and quantify the
over uncertainty sets probability of failure

minmax e f(0; X)] Po(f(X) <)

« With small P, can we solve this quickly? * Why is this the right problem?

« What about when P is large/unknown?  How do we solve it quickly?



Future directions

Automating the development process

™\

Find failures

Build stronger models

“~__



Future directions

Model governance more broadly
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Future directions

Model governance more broadly
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Safety Privacy Fairness

e

Security Sustainability Efficiency




