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Abstract

As machine-learning systems begin deployment in safety-critical domains such as medical

imaging and autonomous driving, model failure is increasingly costly. In such applications,

it is dangerous to deploy models whose robustness and failure modes we do not understand

or cannot certify. This thesis presents techniques to both train and test safety-critical

machine-learning systems. In the first part of this work, we employ the lens of distributional

robustness to develop safety-critical models. Instead of just performing well on a nominal

training set, distributionally robust models are designed to perform well on uncertainty

sets around the data-generating distribution. In regimes with limited, bounded uncertainty

sets (e.g. adversarial perturbations to images), we train certifiably robust models with

negligible losses in computational or statistical efficiency. In regimes with high uncertainty,

we learn how to balance safety and model performance using synthetic data. We employ the

latter technique in the domain of autonomous racing, demonstrating safe yet competitive

autonomous racing algorithms on real 1/10th-scale vehicles.

In the second part of the thesis, we frame testing safety-critical models through the lens

of risk. In contrast to formal verification and other traditional software-testing techniques,

we present a “risk-based framework,” where the goal is to calculate the probability of

failure under a base distribution of environment behavior. For safety-critical algorithms,

this probability is small and the resulting technical challenge is a rare-event simulation

problem. We develop a novel, provably efficient rare-event simulation method that combines

exploration, exploitation, and optimization techniques to efficiently find failure modes and

estimate their rate of occurrence. We apply this technique as a tool for rapid sensitivity

analysis and model comparison in a variety of applications, showcasing its usefulness in

efficiently testing safety-critical autonomous systems.
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Chapter 1

Introduction

There are known unknowns; that is to say we know there

are some things we do not know. But there are also

unknown unknowns—the ones we don’t know we don’t

know.
— Donald Rumsfeld

Over the past two decades, machine-learning (ML) methods have accelerated progress

across various domains such as automated image recognition [249], machine translation

[178], and robotic systems [5, 146]. This success has been largely due to the advent of

low-cost and high-throughput data-collection methods across nearly every field of human

endeavor, a phenomenon that led to dubbing the previous decade as the “Age of Big Data”

[181, 229]. Due to the availability of such large, widely-accessible datasets, the standard

paradigm for measuring model performance has been average-case performance over test

data. New advancements have largely followed the model of increasing model complexity

and attaining larger datasets [280].

The widespread adoption of ML across all domains of scientific inquiry belies the reality

that ML models do not yet achieve the level of reliability expected of modern software.

First of all, they are sensitive to data perturbations. Indeed, perturbations ranging from

unstructured noise to structured distributional shifts and adversarial attacks [26, 116] can

catastrophically degrade performance [213, 170, 202]. Second, proving model performance

over various operating domains is challenging if not intractable for modern architectures

[180, 152], so constructively analyzing failure modes from first principles is difficult. In other

words, modern ML systems are brittle and there is no straightforward way to analyze this

1
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sensitivity other than testing average performance over existing data. Fortunately, average

performance over non-perturbed data has so far been appropriate for the aforementioned

successful applications of ML. We are accustomed to the rare mistranslation of a webpage

or misclassification of a relative in a set of family photos; even when these failures occur,

they are somewhat benign.

Now, however, ML systems are beginning to make high-stakes decisions—as components

of autonomous vehicles [122], banking and stock market infrastructure [254], and medical

devices [98]—where average test performance is no longer sufficient to assess model quality.

Indeed, failures in such safety-critical ML systems are dangerous and costly. As such,

there is a growing need for increased rigor regarding model sensitivity to uncertainties.

Specifically, engineers need to be able to deploy systems that are certifiably robust, meaning

that the models perform provably reliably under specified models of uncertainty. Conversely,

regulators and other stakeholders need tools to impartially assess sensitivities of deployed

models, even those that claim to be certifiably robust; given a model, they need to be able

to find otherwise unknown modes of failure before deployment. Essentially, better training

methods and testing methods are necessary to raise the bar of ML methods to the standards

of model governance that we expect of modern software. Only then can such methods be

ready for safety-critical applications.

This thesis develops training and testing techniques for safety-critical ML models. For

training, we consider the lens of distributional robustness, wherein we explicitly model un-

certainties to the data-generating distribution and build models that have performance

guarantees over the entire uncertainty set. This lens formalizes the notion of being ro-

bust to known unknowns, uncertainties that we can model at training time. As we show

in Section 1.1 below, building distributionally robust models takes the form of minimax

optimization problems.

For testing, we consider the lens of risk, where the goal is to not only discover failure

modes for a model but also their rate of occurrence. This lens formalizes the notion of

understanding model sensitivities to unknown unknowns—that is, we would like to discover

failure modes for a model and understand its weaknesses before deployment. Under this

framework, certificates of model operation take the form of probabilities—we say a model

is ready for deployment when its probability of failure is below some acceptable threshold.

For safety-critical applications, this probability is rare, and accurately determining it takes

the form of a rare-event simulation problem (see Section 1.1 below).
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1.1 Governing equations

The two lenses that frame this thesis—distributional robustness and risk—naturally lend

themselves to the overarching governing equations that will guide the technical approaches of

the following chapters. Here we provide an overview of these equations as well as contextual

background for their development.

1.1.1 Distributional robustness

The classical stochastic optimization problem central to machine learning takes the form

minimize
θ∈Θ

EP0 [`(θ;Z)] (1.1)

over a parameter θ ∈ Θ, where Z ∼ P0, P0 is a distribution on a space Z, and ` is a

loss function. In the most common instantiation of this problem—supervised learning—we

have Z = (X,Y ) for feature vectors X and labels Y ; this setting is the focus of most of

Chapter 2. However, with only slight modifications to this equation, we also encompass the

domain of reinforcement learning, which we cover in Section 2.5.3 and Chapter 3. There

are a variety of classic texts on non-robust formulations of supervised and reinforcement

learning (e.g. [120, 274]).

As a first try towards robustifying problem (1.1), one can consider an uncertainty set

around every input z. The community on robust optimization considers worst-case problems

of this form

minimize
θ∈Θ

sup
u∈U

`(θ; z + u) (1.2)

for some uncertainty set U [235, 27, 304]. Classical approaches to this deterministic form

of robustness tend to be overly conservative and require specially structured losses ` and

uncertainty sets U to solve efficiently.

Distributional robustness is a relaxation of the overly conservative classical approach

to robust optimization. Instead of considering uncertainties over every datapoint z, we

consider an uncertainty set over the distribution P0:

minimize
θ∈Θ

sup
Q∈P

EQ[`(θ;Z)]. (1.3)

Importantly, this formulation subsumes classical robust optimization, as we could define P
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as a collection of uncertainties U around the datapoints z. However, the formulation (1.3)

is much more flexible and allows more expressive classes of uncertainty sets. For example,

one can consider uncertainty sets based on distances between distributions. In particular,

two popular uncertainty sets depend on the Wasserstein distance [93, 257, 40], which is the

focus of Chapter 2, or f -divergences [28, 34, 173, 199, 89, 207, 208], which is the focus of

Chapter 3. As we will show in the sequel, the choice of uncertainty set depends on the types

of perturbations one wishes to model and guard against when training an ML model.

As with classical robust optimization, the choice of P also affects the tractability of the

optimization problem (1.3). This has led several authors to constrain the models over which

they apply distributionally robust techniques (e.g. Namkoong and Duchi [208] consider con-

vex losses ` and Blanchet et al. [40] consider convex losses ` as well as a constrained set of

Wasserstein costs). In contrast, we use the application domain as our guide and proceed

in the reverse direction. In both Chapters 2 and 3, we do not constrain the models and,

furthermore, we guide the parametrization of P by the need of the specific application. We

then proceed by making various relaxations and approximations to convert otherwise in-

tractable problems into efficient optimization problems that still have meaningful certificates

of robustness.

1.1.2 Risk

The problem of testing safety-critical ML algorithms necessitates moving beyond the stan-

dard metric of measuring average performance over a nominal test set. In particular, safety-

critical algorithms have a small failure rate (otherwise they would not be suitable for the

safety-critical application), so the number of examples in this nominal test set is low and

yields little information regarding the ways in which the model is sensitive to tails in the

data-generating distribution P0. As such, several communities have adapted existing tools

for testing safety-critical software to modern ML systems.

The first of these tools is formal verification (e.g. [163, 65, 6]). Such methods attempt to

prove the “correctness” of an algorithm. Let x ∈ X be an input to the system and g : X →
{0, 1} a binary specification function such that g(x) = 0 corresponds to “incorrect” behavior.

Then, the goal of verification is to prove that the set G := {x : g(x) = 0} is empty. The main

problems with this approach are threefold. First, constructing the specification function g

can be extremely difficult as notions of correctness are often ill-defined when interacting

with stochastic human agents in unstructured environments. Unfortunately, ruling out
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scenarios where the algorithm is not at fault is subject to logical inconsistency, combinatorial

growth in specification complexity, and subjective assignment of fault. Second, even if a

specification is given, it is extremely difficult if not impossible to formally verify modern

safety-critical ML models due to their size and complexity [152]. Verification of individual

subcomponents, while potentially tractable, does not necessarily translate to overall safety

when all subsystems operate together. Finally, verification requires rewriting the model in

a formal language, which is difficult for modern ML systems.

Numerous communities have thus moved beyond verification to more tractable ap-

proaches that generally fall under the framework of falsification [71]. Classical falsification

(e.g. [94, 80, 9, 312, 85, 231]) attempts to find any failures. That is, classical falsification

attempts to solve the problem

minimize
x∈X

g(x) (1.4)

To make this approach more amenable to black-box optimization techniques, we can also

consider continuous metrics g : X → [0, 1]. However, the mere existence of failures is trivial

to demonstrate in unstructured environments [260], and falsification does not exploit a gen-

erative model to prioritize high-likelihood failures over lower-likelihood ones in its search

process. Probabilistic falsification (e.g. [175, 164]), on the other hand, searches for the most

probable failure under a generative model. That is, considering a data-generating distri-

bution P0 as above and an associated likelihood function ρ0(x) : X → [0,∞), probabilistic

falsification solves the problem

maximize
x∈X

ρ0(x)(1− g(x)) (1.5)

This approach is more relevant to safety-critical ML systems that operate in unstructured

environments, because it prioritizes higher-likelihood failures.

Our approach builds upon probabilistic falsification. Instead of looking for just the

most probable failure, we attempt to get coverage of all likely failures, thereby building a

comprehensive view of the risk (likelihood and severity) of failure for the ML model. To

do so, we solve the problem of finding the overall probability of failure. Again, we let P0

denote the data-generating distribution and we let X be a space of inputs to the system.

Because we will tend to think of dynamic settings (e.g. the ML model is a controller for a

self-driving car or a medical device) rather than noninteractive supervised-learning settings,

it is useful to think of the random variable X ∼ P0 as defining a realization of a simulation.
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For an objective function f : X → R that measures “safety”—so that low values of f(x)

correspond to dangerous scenarios—our goal is to evaluate the probability of a dangerous

event

pγ := P0(f(X) ≤ γ) (1.6)

for some threshold γ. We call this overall approach to evaluating safety the “risk-based

framework.” Importantly, solving problem (1.6) requires three main components:

(a) Simulator: Because evaluating a safety-critical algorithm in the real world is slow

and dangerous, we require the ability to simulate performance in a virtual world at

scale. Chapter 4 presents a scalable simulation engine developed around the use case

of autonomous highway driving.

(b) Generative models: The virtual world requires realistic agents and conditions that

match the real world. Generative models provide distributions for low-level compo-

nents (e.g. weather patterns and road conditions for an autonomous driving simula-

tion) as well as high-level components (e.g. behaviors of other drivers and/or pedes-

trians in an autonomous driving simulator). Chapter 4 presents methods to build

generative models for high-level components using imitation learning on real-world

datasets.

(c) Search algorithm: With a simulator and generative models, one can simulate an

infinite number of scenarios. However, we would like to focus on the rare tails of the

distribution P0 that induce low values for f . Since these tails are a priori unknown, we

employ a search algorithm to solve this rare-event simulation problem [13]. Chapter

4 presents a naive search algorithm—the cross-entropy method [247]—in the context

of autonomous driving. Chapter 5 presents a novel technique that has guarantees

for statistical and computational efficiency. We apply this technique to a variety of

simulators with given generative models.

1.2 Outline and organization

This thesis is composed of two parts. In the first part, we focus on methods to develop

safety-critical machine-learning algorithms. In Chapter 2, we consider building models

that are reliable against small uncertainty sets P. In particular, we consider perturbing the
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underlying data distribution in a Wasserstein ball, and we provide a training procedure that

provably achieves moderate levels of robustness with little computational or statistical cost

relative to empirical risk minimization for smooth losses. Indeed, our procedure augments

model parameter updates with efficient data perturbations, and our resulting statistical

certificates of robustness are efficiently computable. This chapter is based upon joint work

with Hongseok Namkoong, Riccardo Volpi, and John Duchi [265].

In Chapter 3, we focus on developing safety-critical models in the high-uncertainty

regime, where P is unbounded or simply unknown. In such regimes, balancing safety

with performance is critical because conservativeness degrades model performance whereas

aggressiveness is dangerous. Our overall approach first learns an operational proxy for P
that enables a tractable distributionally robust optimization problem. Because we place

such a high emphasis on safety, we learn P without gathering any external data; we use

only synthetic data. For this chapter, we use the concrete domain of autonomous racing

as a case study for the method. In particular, we develop a novel method for synthesizing

an uncertainty set, which in this application manifests itself as population of good racing

policies, using self-play techniques. We then use this uncertainty set within a distributionally

robust bandit optimization procedure that adaptively adjusts safety based on uncertainty

in opponents’ behaviors. We quantify the tradeoff between robustness and performance

of this two-stage approach, and we experimentally demonstrate it on real 1/10th-scale

racecars. This chapter is based on joint work with Matthew O’Kelly, Hongrui Zheng, Rahul

Mangharam, John Duchi, and Russ Tedrake [267].

In the second part of the thesis, we focus on testing safety-critical models utilizing the

lens of risk. Chapter 4 presents the risk-based framework through the case-study of au-

tonomous driving. Autonomous vehicle (AV) technology still lacks techniques for rigorous

and scalable testing. Real-world testing is dangerous, and, due to the rare nature of ac-

cidents, slow and expensive. We implement a full simulation system capable of testing an

entire AV system, and we employ this system to evaluate the probability of an accident un-

der a base distribution of traffic behavior. Specifically, we demonstrate our framework on

a highway scenario. This chapter is based on joint work with Matthew O’Kelly, Hongseok

Namkoong, John Duchi, and Russ Tedrake [218].

Finally, Chapter 5 expands upon the risk-based framework by developing a novel rare-

event simulation technique. Our method—neural bridge sampling—combines exploration,

exploitation, and optimization techniques to find failure modes and estimate their rate of
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occurrence. We rigorously analyze the computational and statistical performance of neu-

ral bridge sampling, providing theoretical and empirical evidence of its superiority over

other state-of-the-art techniques. We demonstrate its usefulness as a tool for model com-

parison and rapid sensitivity analysis—both essential components to testing safety-critical

algorithms—on a variety of application domains. This chapter is based on joint work with

Matthew O’Kelly, John Duchi, and Russ Tedrake [266].



Part I

Developing Safety-Critical ML

Systems
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Chapter 2

Certifiable robustness against

adversarial attacks

Take things always by their smooth handle.

— Thomas Jefferson

In this chapter, we study how to efficiently certify robustness to uncertainty sets P
that are sufficiently small. Our motivation comes from the domain of image classification,

where imperceptible perturbations to pixels—so-called “adversarial attacks” or “adversarial

examples”[276, 116]—force neural-network classifiers to fail. Indeed, neural networks are

vulnerable to adversarial examples and researchers have proposed many heuristic attack and

defense mechanisms. We address this problem through the principled lens of distributionally

robust optimization, which guarantees performance under adversarial input perturbations.

By considering a Lagrangian penalty formulation of perturbing the underlying data distribu-

tion in a Wasserstein ball, we provide a training procedure that augments model parameter

updates with worst-case perturbations of training data. For smooth losses, our procedure

provably achieves moderate levels of robustness with little computational or statistical cost

relative to empirical risk minimization. Furthermore, our statistical guarantees allow us to

efficiently certify robustness for the population loss. For imperceptible perturbations, our

method matches or outperforms heuristic approaches.

11
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2.1 Introduction

Consider the classical stochastic optimization problem, in which we minimize an expected

loss EP0 [`(θ;Z)] over a parameter θ ∈ Θ, where Z ∼ P0, P0 is a distribution on a space

Z, and ` is a loss function. In many systems, robustness to changes in the data-generating

distribution P0 is desirable, whether they be from covariate shifts, changes in the underly-

ing domain [26], or adversarial attacks [116, 170]. As deep networks become prevalent in

modern performance-critical systems—prominent examples include perception systems for

self-driving cars, and automated detection of tumors—model failure is increasingly costly.

In these situations, it is irresponsible to deploy models whose robustness and failure modes

we do not understand or cannot certify.

Recent work shows that neural networks are vulnerable to adversarial examples; seem-

ingly imperceptible perturbations to data can lead to misbehavior of the model, such as

misclassification of the output [116, 213, 170, 202]. Consequently, researchers have pro-

posed adversarial attack and defense mechanisms [225, 226, 227, 245, 57, 125, 188, 283].

These works provide an initial foundation for adversarial training, but it is challenging to

rigorously identify the classes of attacks against which they can defend (or if they exist).

Alternative approaches that provide formal verification of deep networks [139, 152] are NP-

hard in general; they require prohibitive computational expense even on small networks.

Recently, researchers have proposed convex relaxations of the NP-hard verification prob-

lem with some success [162, 233], though they may be difficult to scale to large networks.

Our work is situated between these agendas: we develop efficient procedures with rigorous

guarantees for small to moderate amounts of robustness.

We take the perspective of distributionally robust optimization and provide an ad-

versarial training procedure with provable guarantees on its computational and statistical

performance. Postulating a class P of distributions around the data-generating distribution

P0, we consider

minimize
θ∈Θ

sup
P∈P

EP [`(θ;Z)]. (2.1)

The choice of P influences robustness guarantees and computability; we develop robustness

sets P with computationally efficient relaxations that apply even when the loss ` is non-

convex. We provide an adversarial training procedure that, for smooth `, enjoys convergence

guarantees similar to non-robust approaches while certifying performance even for the worst-

case population loss supP∈P EP [`(θ;Z)]. On a simple implementation in Tensorflow, our
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method takes 5–10× as long as stochastic gradient methods for empirical risk minimization

(ERM), matching runtimes for other adversarial training procedures [116, 170, 188]. We

show that our procedure—which learns to protect against adversarial perturbations in the

training dataset—generalizes, allowing us to train a model that prevents attacks to the test

dataset.

We briefly overview our approach. Let c : Z × Z → R+ ∪ {∞}, where c(z, z0) is

the “cost” for an adversary to perturb z0 to z (we typically use c(z, z0) = ‖z − z0‖2p with

p ≥ 1). We consider the robustness region P = {P : Wc(P, P0) ≤ ρ}, a ρ-neighborhood

of the distribution P0 under the Wasserstein metric Wc(·, ·) (see Section 2.2 for a formal

definition). For deep networks and other complex models, this formulation of problem (2.1)

is intractable with arbitrary ρ. Instead, we consider its Lagrangian relaxation for a fixed

penalty parameter γ ≥ 0, resulting in the reformulation

minimize
θ∈Θ

{
F (θ) := sup

P
{EP [`(θ;Z)]− γWc(P, P0)} = EP0 [φγ(θ;Z)]

}
(2.2a)

where φγ(θ; z0) := sup
z∈Z
{`(θ; z)− γc(z, z0)} . (2.2b)

(See Proposition 2.1 for a rigorous statement of these equalities.) Here, we replaced the

usual loss `(θ;Z) by the robust surrogate φγ(θ;Z); this surrogate (2.2b) allows adversarial

perturbations of the data z, modulated by the penalty γ. As P0 is unknown, we solve the

penalty problem (2.2) with P0 replaced by the empirical distribution P̂n; we refer to this as

the penalty problem below.

The key feature of the penalty problem (2.2) is that moderate levels of robustness—

in particular, defense against imperceptible adversarial perturbations—are achievable at

essentially no computational or statistical cost for smooth losses `. Specifically, for large

enough penalty γ (by duality, small enough robustness ρ), the function z 7→ `(θ; z)−γc(z, z0)

in the robust surrogate (2.2b) is strongly concave and hence easy to optimize if `(θ, z) is

smooth in z. Consequently, stochastic gradient methods applied to problem (2.2) have

similar convergence guarantees as for non-robust methods (ERM). In Section 2.3, we provide

a certificate of robustness for any ρ; we give an efficiently computable data-dependent

upper bound on the worst-case loss supP :Wc(P,P0)≤ρ EP [`(θ;Z)]. That is, the worst-case

performance of the output of our principled adversarial training procedure is guaranteed to

be no worse than this certificate. Our bound is tight when ρ = ρ̂n, the achieved robustness

for the empirical objective. These results suggest advantages of networks with smooth
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activations rather than ReLUs. In Section 2.4, we substantiate our optimization guarantees

(Section 2.2) and certificate of robustness (Section 2.3) by providing concrete bounds on the

smoothness levels of neural networks. We experimentally verify our results in Section 2.5

and show that we match or achieve state-of-the-art performance on a variety of adversarial

attacks.

Robust optimization and adversarial training The standard robust-optimization ap-

proach minimizes worst-case losses of the form supu∈U `(θ; z + u) for some uncertainty set

U [235, 27, 304]. Unfortunately, this approach is intractable except for specially structured

losses, such as the composition of a linear and simple convex function [27, 304, 305]. Nev-

ertheless, this robust approach underlies recent advances in adversarial training [276, 116,

226, 188], which heuristically perturb data during a stochastic optimization procedure.

One such heuristic uses a locally linearized loss function (proposed with p = ∞ as the

“fast gradient sign method”[116]):

∆xi(θ) := argmax
‖η‖p≤ε

{∇x`(θ; (xi, yi))
T η} and perturb xi → xi + ∆xi(θ). (2.3)

One form of adversarial training trains on the losses `(θ; (xi + ∆xi(θ), yi)) [116, 170], while

others perform iterated variants [226, 57, 188, 283]. Madry et al. [188] observe that these

procedures attempt to optimize the objective EP0 [sup‖u‖p≤ε `(θ;Z + u)], a constrained ver-

sion of the penalty problem (2.2). This notion of robustness is typically intractable: the

inner supremum is generally non-concave in u, so it is unclear whether model-fitting with

these techniques converges, and there are possibly worst-case perturbations these techniques

do not find. Indeed, it is NP-hard to find worst-case perturbations when deep networks use

ReLU activations, suggesting difficulties for fast and iterated heuristics (see Lemma 2.2 in

Section 2.2.1). Smoothness, which can be obtained in standard deep architectures with

exponential linear units (ELUs)[69], allows us to find Lagrangian worst-case perturbations

with low computational cost.

Distributionally robust optimization To situate the current work, we review some of

the substantial body of work on robustness and learning. The choice of P in the robust

objective (2.1) affects both the richness of the uncertainty set we wish to consider as well as

the tractability of the resulting optimization problem. Previous approaches to distributional
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robustness have considered finite-dimensional parametrizations for P, such as constraint

sets for moments, support, or directional deviations [64, 78, 114], as well as non-parametric

distances for probability measures such as f -divergences [28, 34, 173, 199, 89, 207], and

Wasserstein distances [93, 257, 40, 104, 41, 105, 167]. In constrast to f -divergences (e.g. χ2-

or Kullback-Leibler divergences) which are effective when the support of the distribution

P0 is fixed, a Wasserstein ball around P0 includes distributions Q with different support

and allows (in a sense) robustness to unseen data.

Many authors have studied tractable classes of uncertainty sets P and losses `. For

example, Ben-Tal et al. [28], Lam [172] and Namkoong and Duchi [208] use convex opti-

mization approaches for f -divergence balls. For worst-case regions P formed by Wasserstein

balls, Esfahani and Kuhn [93], Shafieezadeh-Abadeh et al. [257], Blanchet et al. [40], and

Kuhn et al. [167] propose tractable approaches for solving the saddle-point problem (2.1),

such as converting it into a regularized ERM problem; but this is possible only for a limited

class of convex losses ` and costs c. As we are interested in machine learning applications, we

treat a larger class of losses and costs and provide direct solution methods for a Lagrangian

relaxation of the saddle-point problem (2.1).

One natural application is domain adaptation; Lee and Raginsky [174] provide guaran-

tees similar to ours for the empirical minimizer of the robust saddle-point problem (2.1)

and give specialized bounds for domain adaptation problems. Their bounds rely on concen-

tration of the empirical distribution to its population counterpart in Wasserstein distance,

which may be prohibitively slow even in moderate dimensional problems. In contrast,

our statistical guarantees have the usual dependence on the dimension based on covering

numbers, and we develop efficient optimization procedures for our distributionally robust

approach. Through an extensive set of experiments, we provide empirical evidence that our

algorithm defends against imperceptible adversarial perturbations.

2.2 Proposed approach

Our approach is based on the following simple insight: assume that the function z 7→ `(θ; z)

is smooth, meaning there is some L for which ∇z`(θ; ·) is L-Lipschitz. Then for any c :

Z × Z → R+ ∪ {∞} 1-strongly convex in its first argument, a Taylor expansion yields

`(θ; z′)− γc(z′, z0) ≤ `(θ; z)− γc(z, z0) + 〈∇z(`(θ; z)− γc(z, z0)), z′ − z〉+
L− γ

2
‖z − z′‖22 . (2.4)
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For γ ≥ L this is the first-order condition for (γ − L)-strong concavity of z 7→ (`(θ; z) −
γc(z, z0)). Thus, whenever the loss is smooth enough in z and the penalty γ is large enough

(corresponding to less robustness), computing the surrogate (2.2b) is a strongly-concave

optimization problem.

We leverage the insight (2.4) to show that as long as we do not require too much

robustness, this strong concavity approach (2.4) provides a computationally efficient and

principled approach for robust optimization problems (2.1). Our starting point is a duality

result for the minimax problem (2.1) and its Lagrangian relaxation for Wasserstein-based

uncertainty sets, which makes the connections between distributional robustness and the

“lazy” surrogate (2.2b) clear. We then show (Section 2.2.1) how stochastic gradient descent

methods can efficiently find minimizers (in the convex case) or approximate stationary

points (when ` is non-convex) for our relaxed robust problems.

Wasserstein robustness and duality Wasserstein distances define a notion of closeness

between distributions. Let Z ⊂ Rm, and let (Z,A, P0) be a probability space. Let the

transportation cost c : Z × Z → [0,∞) be nonnegative, lower semi-continuous, and satisfy

c(z, z) = 0. For example, for a differentiable convex h : Z → R, the Bregman divergence

c(z, z0) = h(z)−h(z0)−〈∇h(z0), z − z0〉 satisfies these conditions. For probability measures

P and Q supported on Z, let Π(P,Q) denote their couplings, meaning measures M on Z2

with M(A,Z) = P (A) and M(Z, A) = Q(A). The Wasserstein distance between P and Q

is

Wc(P,Q) := inf
M∈Π(P,Q)

EM [c(Z,Z ′)].

For ρ ≥ 0 and distribution P0, we let P = {P : Wc(P, P0) ≤ ρ}, considering the Wasserstein

form of the robust problem (2.1) and its Lagrangian relaxation (2.2) with γ ≥ 0. The

following duality result [39, 104] gives the equality (2.2) for the relaxation and an analogous

result for the problem (2.1). We give an alternative proof in Appendix A.2.1 for convex,

continuous cost functions.

Proposition 2.1. Let ` : Θ× Z → R and c : Z × Z → R+ be continuous. Let φγ(θ; z0) =

supz∈Z {`(θ; z)− γc(z, z0)} be the robust surrogate (2.2b). For any distribution Q and any

ρ > 0,

sup
P :Wc(P,Q)≤ρ

EP [`(θ;Z)] = inf
γ≥0

{
γρ+ EQ[φγ(θ;Z)]

}
, (2.5)
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and for any γ ≥ 0, we have

sup
P
{EP [`(θ;Z)]− γWc(P,Q)} = EQ[φγ(θ;Z)]. (2.6)

Leveraging the insight (2.4), we give up the requirement that we wish a prescribed amount

ρ of robustness (solving the worst-case problem (2.1) for P = {P : Wc(P, P0) ≤ ρ}) and

focus instead on the Lagrangian penalty problem (2.2) and its empirical counterpart

minimize
θ∈Θ

{
Fn(θ) := sup

P

{
E[`(θ;Z)]− γWc(P, P̂n)

}
= E

P̂n
[φγ(θ;Z)]

}
. (2.7)

2.2.1 Optimizing the robust loss by stochastic gradient descent

We now develop stochastic gradient-type methods for the relaxed robust problem (2.7),

making clear the computational benefits of relaxing the strict robustness requirements of

formulation (2.5). We begin with assumptions we require, which quantify the amount of

robustness we can provide.

Assumption 2.1. The function c : Z × Z → R+ is continuous. For each z0 ∈ Z, c(·, z0)

is 1-strongly convex with respect to the norm ‖·‖.

To guarantee that the robust surrogate (2.2b) is tractably computable, we also require a

few smoothness assumptions. Let ‖·‖∗ be the dual norm to ‖·‖; we abuse notation by using

the same norm ‖·‖ on Θ and Z, though the specific norm is clear from context.

Assumption 2.2. The loss ` : Θ×Z → R satisfies the Lipschitzian smoothness conditions

∥∥∇θ`(θ; z)−∇θ`(θ′; z)∥∥∗ ≤ Lθθ ∥∥θ − θ′∥∥ , ∥∥∇z`(θ; z)−∇z`(θ; z′)∥∥∗ ≤ Lzz

∥∥z − z′∥∥ ,∥∥∇θ`(θ; z)−∇θ`(θ; z′)∥∥∗ ≤ Lθz ∥∥z − z′∥∥ , ∥∥∇z`(θ; z)−∇z`(θ′; z)∥∥∗ ≤ Lzθ

∥∥θ − θ′∥∥ .
These properties guarantee both (i) the well-behavedness of the robust surrogate φγ and

(ii) its efficient computability. Making point (i) precise, Lemma 2.1 shows that if γ is large

enough and Assumption 2.2 holds, the surrogate φγ is still smooth. Throughout, we assume

Θ ⊆ Rd.

Lemma 2.1. Let f : Θ × Z → R be differentiable and λ-strongly concave in z with re-

spect to the norm ‖·‖, and define f̄(θ) = supz∈Z f(θ, z). Let gθ(θ, z) = ∇θf(θ, z) and

gz(θ, z) = ∇zf(θ, z), and assume gθ and gz satisfy Assumption 2.2 with `(θ; z) replaced
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Algorithm 2.1 Distributionally robust optimization with adversarial training

Input: Sampling distribution P0, constraint sets Θ and Z, stepsize sequence {αt >
0}T−1
t=0

for t = 0, . . . , T − 1 do
Sample zt ∼ P0 and find an ε-approximate maximizer ẑt of `(θt; z)− γc(z, zt)
θt+1 ← ProjΘ(θt − αt∇θ`(θt; ẑt))

with f(θ, z). Then f̄ is differentiable, and letting z?(θ) = argmaxz∈Z f(θ, z), we have

∇f̄(θ) = gθ(θ, z
?(θ)). Moreover,

‖z?(θ1)− z?(θ2)‖ ≤ Lzθ

λ
‖θ1 − θ2‖ and

∥∥∇f̄(θ)−∇f̄(θ′)
∥∥
?
≤
(
Lθθ +

LθzLzθ

λ

)∥∥θ − θ′∥∥ .
See Section A.2.2 for the proof. Fix z0 ∈ Z and focus on the `2-norm case where c(z, z0)

satisfies Assumption 2.1 with ‖·‖2. Noting that f(θ, z) := `(θ, z) − γc(z, z0) is (γ − Lzz)-

strongly concave from the insight (2.4) (with L := Lzz), let us apply Lemma 2.1. Under

Assumptions 2.1, 2.2, φγ(·; z0) then has L = Lθθ + LθzLzθ
[γ−Lzz]+

-Lipschitz gradients, and

∇θφγ(θ; z0) = ∇θ`(θ; z?(z0, θ)) where z?(z0, θ) = argmax
z∈Z

{`(θ; z)− γc(z, z0)}.

This motivates Algorithm 2.1, a stochastic-gradient approach for the penalty problem (2.7).

The benefits of Lagrangian relaxation become clear here: for `(θ; z) smooth in z and γ

large enough, gradient ascent on `(θt; z) − γc(z, zt) in z converges linearly and we can

compute (approximate) ẑt efficiently (we initialize our inner gradient ascent iterations with

the sampled natural example zt).

Convergence properties of Algorithm 2.1 depend on the loss `. When ` is convex in

θ and γ is large enough that z 7→ (`(θ; z) − γc(z, z0)) is concave for all (θ, z0) ∈ Θ × Z,

we have a stochastic monotone variational inequality, which is efficiently solvable [145, 66]

with convergence rate 1/
√
T . When the loss ` is nonconvex in θ, the following theorem

guarantees convergence to a stationary point of problem (2.7) at the same rate when γ ≥
Lzz. Recall that F (θ) = EP0 [φγ(θ;Z)] is the robust surrogate objective for the Lagrangian

relaxation (2.2).

Theorem 2.1 (Convergence of Nonconvex SGD). Let Assumptions 2.1 and 2.2 hold with the

`2-norm and let Θ = Rd. Let ∆F ≥ F (θ0)−infθ F (θ). Assume E[‖∇F (θ)−∇θφγ(θ, Z)‖22] ≤
σ2 and take constant stepsizes α =

√
∆F

LφTσ2 where Lφ := Lθθ + LθzLzθ
γ−Lzz

. For T ≥ Lφ∆F

σ2 ,
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Algorithm 2.1 satisfies

1

T

T−1∑
t=0

E
[∥∥∇F (θt)

∥∥2

2

]
−

4L2
θz

γ − Lzz
ε ≤ 4σ

√
Lφ∆F

T
.

See Section A.2.3 for the proof. We make a few remarks. First, the condition

E[‖∇F (θ)−∇θφγ(θ, Z)‖22] ≤ σ2 holds (to within a constant factor) whenever ‖∇θ`(θ, z)‖2 ≤
σ for all θ, z. Theorem 2.1 shows that the stochastic gradient method achieves the rates

of convergence on the penalty problem (2.7) achievable in standard smooth non-convex

optimization [110]. The accuracy parameter ε has a fixed effect on optimization accuracy,

independent of T : approximate maximization has limited effects.

Key to the convergence guarantee of Theorem 2.1 is that the loss ` is smooth in z:

the inner supremum (2.2b) is NP-hard to compute for non-smooth deep networks (see

Lemma 2.2 in Section 2.2.1 below for a proof of this for networks with ReLUs). The

smoothness of ` is essential so that a penalized version `(θ, z) − γc(z, z0) is concave in z

(which can be approximately verified by computing Hessians ∇2
zz`(θ, z) for each training

datapoint), allowing computation and our coming certificates of optimality. Replacing

ReLUs with sigmoids or ELUs [69] allows us to apply Theorem 2.1, making distributionally

robust optimization tractable for deep learning.

Our distributionally robust framework (2.2) is general enough to consider adversarial

perturbations to an arbitrary subset of coordinates in Z. For example, it is appropriate

in certain applications to hedge against adversarial perturbations to a small fixed region

of an image [52]. By modifying the cost function c(z, z′) to take value ∞ outside this

small region, our general formulation covers such variants. In Section 2.2.2, we illustrate

this modification for supervised-learning scenarios, where we adversarially perturb feature

vectors of datapoints but not their labels.

Finding worst-case perturbations with ReLUs is NP-hard

To emphasize the importance of smoothness in efficiently finding solutions to the inner

supremem (2.2b), we show that computing worst-case perturbations supu∈U `(θ; z+u) is NP-

hard for a large class of feedforward neural networks with (non-smooth) ReLU activations.

This result is essentially due to Katz et al. [152]. In the following, we use polynomial time

to mean polynomial growth with respect to m, the dimension of the inputs z.

An optimization problem is NPO (NP-Optimization) if (i) the dimensionality of the
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solution grows polynomially, (ii) the language {u ∈ U} can be recognized in polynomial

time (i.e. a deterministic algorithm can decide in polynomial time whether u ∈ U), and (iii)

` can be evaluated in polynomial time. We restrict analysis to feedforward neural networks

with ReLU activations such that the corresponding worst-case perturbation problem is

NPO.1 Furthermore, we impose separable structure on U , that is, U := {v ≤ u ≤ w} for

some v < w ∈ Rm. See Section A.2.4 for the proof of the following result.

Lemma 2.2. Consider feedforward neural networks with ReLUs and let U := {v ≤ u ≤ w},
where v < w such that the optimization problem maxu∈U `(θ; z + u) is NPO. Then there

exists θ such that this optimization problem is also NP-hard.

2.2.2 Supervised learning

In supervised learning settings such as classification, it is often natural to only consider

adversarial perturbations to the feature vectors (covariates). In this section, we give an

adaptation of the results in Section 2.2 to such scenarios. Let Z = (X,Y ) ∈ X × R
where X ∈ X is a feature vector2 and Y ∈ R is a label. In classification settings, we have

Y ∈ {1, . . . ,K}. We consider an adversary that can only perturb the feature vector X [116],

which can be easily represented in our robust formulation (2.2) by defining the Wasserstein

cost function c : Z × Z → R+ ∪ {∞} as follows: for z = (x, y) and z′ = (x′, y′) define the

covariate-shift cost function as

c(z, z′) := cx(x, x′) +∞ · 1
{
y 6= y′

}
(2.8)

where cx : X × X → R+ is the transportation cost for the feature vector X. As before,

we assume that cx is nonnegative, continuous, convex in its first argument and satisfies

cx(x, x) = 0.

Under the cost function (2.8), the robust surrogate loss in the penalty problem (2.2)

and its empirical counterpart (2.7) become

φγ(θ; (x0, y0)) = sup
x∈X
{`(θ; (x, y0))− γcx(x, x0)} .

Similarly as in Section 2.2.1, we require the following two assumptions that guarantee

1Note that z, u ∈ Rm, so trivially the dimensionality of the solution grows polynomially.
2We assume that X is a subset of normed vector space.
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efficient computability of the robust surrogate φγ .

Assumption 2.3. The function cx : X ×X → R+ is continuous. For each x0 ∈ X , cx(·, x0)

is 1-strongly convex with respect to the norm ‖·‖.

Let ‖·‖∗ be the dual norm to ‖·‖; we again abuse notation by using the same norm ‖·‖ on

Θ and X , though the specific norm is clear from context.

Assumption 2.4. The loss ` : Θ×Z → R satisfies the Lipschitzian smoothness conditions

‖∇θ`(θ; (x, y))−∇θ`(θ′; (x, y))‖∗ ≤ Lθθ ‖θ − θ
′‖ , ‖∇x`(θ; (x, y))−∇x`(θ; (x′, y))‖∗ ≤ Lxx ‖x− x′‖ ,

‖∇θ`(θ; (x, y))−∇θ`(θ; (x′, y))‖∗ ≤ Lθx ‖x− x
′‖ , ‖∇x`(θ; (x, y))−∇x`(θ′; (x, y))‖∗ ≤ Lxθ ‖θ − θ′‖ .

Under Assumptions 2.3 and 2.4, an analogue of Lemma 2.1 still holds. The proof of the

following result is nearly identical to that of Lemma 2.1; we state the full result for com-

pleteness.

Lemma 2.3. Let f : Θ×X → R be differentiable and λ-strongly concave in x with respect

to the norm ‖·‖, and define f̄(θ) = supx∈X f(θ, x). Let gθ(θ, x) = ∇θf(θ, x) and gx(θ, x) =

∇xf(θ, x), and assume gθ and gx satisfy the Lipschitz conditions of Assumption 2.2. Then

f̄ is differentiable, and letting x?(θ) = argmaxx∈X f(θ, x), we have ∇f̄(θ) = gθ(θ, x
?(θ)).

Moreover,

‖x?(θ1)− x?(θ2)‖ ≤ Lxθ

λ
‖θ1 − θ2‖ and

∥∥∇f̄(θ)−∇f̄(θ′)
∥∥
?
≤
(
Lθθ +

LθxLxθ

λ

)∥∥θ − θ′∥∥ .
From Lemma 2.3, we immediately get an analogue to Theorem 2.1 for the cost function (2.8).

Corollary 2.1 (Convergence of Nonconvex SGD). Let Assumptions 2.3 and 2.4 hold with

the `2-norm and let Θ = Rd. Let ∆F ≥ F (θ0)−infθ F (θ). Assume E[‖∇F (θ)−∇θφγ(θ, Z)‖22] ≤

σ2, and take constant stepsizes α =
√

2∆F
Lσ2T

where L = Lθθ + LθxLxθ
γ−Lxx

. Then Algorithm 2.1

satisfies

1

T

T∑
t=1

E
[∥∥∇F (θt)

∥∥2

2

]
−

2L2
θx

γ − Lxx
ε ≤ σ

√
8
L∆F

T
.

The proof of Corollary 2.1 is identical to that of Theorem 2.1, but applies Lemma 2.3 instead

of Lemma 2.1.
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2.3 Certificate of robustness and generalization

From results in the previous section, Algorithm 2.1 provably learns to protect against ad-

versarial perturbations of the form (2.7) on the training dataset. Now we show that such

procedures generalize, allowing us to prevent attacks on the test set. Our subsequent re-

sults hold uniformly over the space of parameters θ ∈ Θ, including θWRM, the output of the

stochastic gradient descent procedure in Section 2.2.1. Our first main result, presented in

Section 2.3.1, gives a data-dependent upper bound on the population worst-case objective

supP :Wc(P,P0)≤ρ EP [`(θ;Z)] for any arbitrary level of robustness ρ; this bound is optimal for

ρ = ρ̂n, the level of robustness achieved for the empirical distribution by solving (2.7). Our

bound is efficiently computable and hence certifies a level of robustness for the worst-case

population objective. Second, we show in Section 2.3.2 that adversarial perturbations on the

training set (in a sense) generalize: solving the empirical penalty problem (2.7) guarantees

a similar level of robustness as directly solving its population counterpart (2.2).

2.3.1 Certificate of robustness

Our main result in this section is a data-dependent upper bound for the worst-case popu-

lation objective: supP :Wc(P,P0)≤ρ EP [`(θ;Z)] ≤ γρ+ E
P̂n

[φγ(θ;Z)] +O(1/
√
n) for all θ ∈ Θ,

with high probability. To make this rigorous, fix γ > 0, and consider the worst-case pertur-

bation, typically called the transportation map or Monge map [290],

Tγ(θ; z0) := argmax
z∈Z

{`(θ; z)− γc(z, z0)}. (2.9)

Under our assumptions, Tγ is easily computable when γ ≥ Lzz. Letting δz denote the

point mass at z, Proposition 2.1 shows the empirical maximizers of the Lagrangian formu-

lation (2.6) are attained by

P ∗n(θ) := argmax
P

{
EP [`(θ;Z)]− γWc(P, P̂n)

}
=

1

n

n∑
i=1

δTγ(θ,Zi) and

ρ̂n(θ) := Wc(P
∗
n(θ), P̂n) = E

P̂n
[c(Tγ(θ;Z), Z)].

(2.10)

Our results imply, in particular, that the empirical worst-case loss EP ∗n [`(θ;Z)] gives a certifi-

cate of robustness to (population) Wasserstein perturbations up to level ρ̂n. EP ∗n(θ)[`(θ;Z)]

is efficiently computable via (2.10), providing a data-dependent guarantee for the worst-case
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population loss.

Our bound relies on the usual covering numbers for the model class {`(θ; ·) : θ ∈ Θ}
as the notion of complexity [e.g. 288], so, despite the infinite-dimensional problem (2.7),

we retain the same uniform convergence guarantees typical of empirical risk minimization.

Recall that for a set V , a collection v1, . . . , vN is an ε-cover of V in norm ‖·‖ if for each

v ∈ V, there exists vi such that ‖v − vi‖ ≤ ε. The covering number of V with respect to ‖·‖
is

N(V, ε, ‖·‖) := inf {N ∈ N | there is an ε-cover of V with respect to ‖·‖} .

For F := {`(θ, ·) : θ ∈ Θ} equipped with the L∞(X ) norm ‖f‖L∞(X ) := supX∈X |f(X)|, we

state our results in terms of ‖·‖L∞(X )-covering numbers of F . To ease notation, we let

εn(t) := γb1

√
M`

n

∫ 1

0

√
logN(F ,M`ε, ‖·‖L∞(X ))dε+ b2M`

√
t

n

where b1, b2 are numerical constants.

We are now ready to state the main result of this section. We first show from the duality

result (2.6) that we can provide an upper bound for the worst-case population performance

for any level of robustness ρ. For ρ = ρ̂n(θ) and θ = θWRM, this certificate is (in a sense)

tight as we see below.

Theorem 2.2. Assume |`(θ; z)| ≤ M` for all θ ∈ Θ and z ∈ Z. Then, for a fixed t > 0

and numerical constants b1, b2 > 0, with probability at least 1 − e−t, simultaneously for all

θ ∈ Θ, ρ ≥ 0, γ ≥ 0,

sup
P :Wc(P,P0)≤ρ

EP [`(θ;Z)] ≤ γρ+ E
P̂n

[φγ(θ;Z)] + εn(t). (2.11)

In particular, if ρ = ρ̂n(θ) then with probability at least 1− e−t, for all θ ∈ Θ

sup
P :Wc(P,P0)≤ρ̂n(θ)

EP [`(θ;Z)] ≤ γρ̂n(θ) + E
P̂n

[φγ(θ;Z)] + εn(t)

= sup
P :Wc(P,P̂n)≤ρ̂n(θ)

EP [`(θ;Z)] + εn(t). (2.12)

See Section A.2.5 for its proof. We now give a concrete variant for Lipschitz functions. When

Θ is finite-dimensional (Θ ⊂ Rd), Theorem 2.2 provides a robustness guarantee scaling

linearly with d despite the infinite-dimensional Wasserstein penalty. Assuming there exist
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θ0 ∈ Θ, Mθ0 < ∞ such that |`(θ0; z)| ≤ Mθ0 for all z ∈ Z, we have the following corollary

(see proof in Section A.2.6).

Corollary 2.2. Let `(·;X) be L-Lipschitz with respect to some norm ‖·‖ for all X ∈ X .

Assume that Θ ⊂ Rd satisfies diam(Θ) = supθ,θ′∈Θ ‖θ − θ′‖ <∞. Then, the bounds (2.11)

and (2.12) hold with

εn(t) = b1

√
d(Ldiam(Θ) +Mθ0)

n
+ b2(Ldiam(Θ) +Mθ0)

√
t

n
(2.13)

for some numerical constants b1, b2 > 0.

A key consequence of the bound (2.11) is that γρ+E
P̂n

[φγ(θ;Z)] certifies robustness for

the worst-case population objective for any ρ and θ. For a given θ, this certificate is tightest

at the achieved level of robustness ρ̂n(θ), as noted in the refined bound (2.12) which follows

from the duality result

E
P̂n

[φγ(θ;Z)]︸ ︷︷ ︸
surrogate loss

+ γρ̂n(θ)︸ ︷︷ ︸
robustness

= sup
P :Wc(P,P̂n)≤ρ̂n(θ)

EP [`(θ;Z)] = EP ∗n(θ)[`(θ;Z)]. (2.14)

(See Section A.2.5 for a proof of these equalities.) We expect θWRM, the output of Algo-

rithm 2.1, to be close to the minimizer of the surrogate loss E
P̂n

[φγ(θ;Z)] and therefore have

the best guarantees. Most importantly, the certificate (2.14) is easy to compute via expres-

sion (2.10): as noted in Section 2.2.1, the mappings T (θ, Zi) are efficiently computable for

large enough γ, and ρ̂n = E
P̂n

[c(T (θ, Z), Z)].

The bounds (2.11)–(2.13) may be too large—because of their dependence on covering

numbers and dimension—for practical use in security-critical applications. With that said,

the strong duality result, Proposition 2.1, still applies to any distribution. Given a collection

of test examples Ztest
i , we may interrogate possible losses under perturbations for the test

examples by noting that, if P̂test denotes the empirical distribution on the test set (say, with

putative assigned labels), then

1

ntest

n∑
i=1

sup
z:c(z,Ztest

i )≤ρ
{`(θ; z)} ≤ sup

P :Wc(P,P̂test)≤ρ
EP [`(θ;Z)] ≤ γρ+ E

P̂test
[φγ(θ;Z)] (2.15)

for all γ, ρ ≥ 0. Whenever γ is large enough (so that this is tight for small ρ), we may

efficiently compute the Monge-map (2.9) and the test loss (2.15) to guarantee bounds on
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the sensitivity of a parameter θ to a particular sample and predicted labeling based on the

sample.

2.3.2 Generalization of adversarial examples

We can also show that the level of robustness on the training set generalizes. Our starting

point is Lemma 2.1, which shows that Tγ(·; z) is smooth under Assumptions 2.1 and 2.2:

‖Tγ(θ1; z)− Tγ(θ2; z)‖ ≤ Lzθ

[γ − Lzz]+
‖θ1 − θ2‖ (2.16)

for all θ1, θ2, where Lzz was the Lipschitz constant of ∇z`(θ; z). We provide explicit bounds

on the smoothness constant Lzz for neural networks with smooth activation functions in

Section 2.4. Leveraging this smoothness, we now show that ρ̂n(θ) = E
P̂n

[c(Tγ(θ;Z), Z)],

the level of robustness achieved for the empirical problem, concentrates uniformly around

its population counterpart.

Theorem 2.3. Let Z ⊂ {z ∈ Rm : ‖z‖ ≤Mz} so that ‖Z‖ ≤Mz almost surely and assume

either that (i) c(·, ·) is Lc-Lipschitz over Z with respect to the norm ‖·‖ in each argument,

or (ii) that `(θ, z) ∈ [0,M`] and z 7→ `(θ, z) is γLc-Lipschitz for all θ ∈ Θ.

If Assumptions 2.1 and 2.2 hold, then with probability at least 1− e−t,

sup
θ∈Θ
|E
P̂n

[c(Tγ(θ;Z), Z)]−EP0 [c(Tγ(θ;Z), Z)]| ≤ 4B

√
1

n

(
t+ logN

(
Θ,

[γ − Lzz]+ t

4LcLzθ
, ‖·‖

))
.

(2.17)

where B = LcMz under assumption (i) and B = M`/γ under assumption (ii).

See Section A.2.7 for the proof. For Θ ⊂ Rd, we have logN(Θ, ε, ‖·‖) ≤ d log(1 + diam(Θ)
ε )

so that the bound (2.18) gives the usual
√
d/n generalization rate for the distance between

adversarial perturbations and natural examples. Another consequence of Theorem 2.3

is that ρ̂n(θWRM) in the certificate (2.12) is positive as long as the loss ` is not com-

pletely invariant to data. To see this, note from the optimality conditions for Tγ(θ;Z) that

EP0 [c(Tγ(θ;Z), Z)] = 0 iff ∇z`(θ; z) = 0 almost surely, and hence for large enough n, we

have ρ̂n(θ) > 0 by the bound (2.18).

An analogous result to Theorem 2.3 holds in the supervised-learning setting with the
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modified cost function (2.8). Abusing notation, redefine the transport map with the modi-

fied cost function (2.8)

Tγ(θ; (x0, y0)) := argmax
x∈X

{`(θ; (x, y0))− γcx(x, x0)}.

Corollary 2.3. Let Z ⊂ {z ∈ Rm : ‖z‖ ≤ Mz} so that ‖Z‖ ≤ Mz almost surely and

assume either that (i) cx(·, ·) is Lc-Lipschitz over X with respect to the norm ‖·‖ in each

argument, or (ii) that `(θ, z) ∈ [0,M`] and x 7→ `(θ, (x, y)) is γLc-Lipschitz for all θ ∈ Θ.

If Assumptions 2.3 and 2.4 hold, then with probability at least 1− e−t,

sup
θ∈Θ
|E
P̂n

[c(Tγ(θ;Z), Z)]−EP0 [c(Tγ(θ;Z), Z)]| ≤ 4D

√
1

n

(
t+ logN

(
Θ,

[γ − Lxx]+ t

4LcLxθ
, ‖·‖

))
.

(2.18)

where B = LcMz under assumption (i) and B = M`/γ under assumption (ii).

The proof of Corollary 2.3 is identical to that of Theorem 2.3, but it applies Lemma 2.3

instead of Lemma 2.1.

2.4 Bounds on smoothness of neural networks

In this section, we give upper bounds on the Lipschitz constant Lxx of the loss x 7→
`(θ; (x, y)). We focus on the supervised-learning setting presented in Section 2.2.2 for ease

of notation. Since our optimization and generalization guarantees apply only for γ ≥ Lxx,

our below examples serve as concrete numbers at which we can provide theoretical guaran-

tees on adversarial training. We first provide bounds on deep neural networks with smooth

activation functions, and apply them in the classification setting. Our bounds are based on

worst-case matrix norm bounds that can be prohibitively loose for deep architectures but

often provide reasonable estimates in moderate scales. Due to the conservative nature of

the bound, choosing γ larger than this value—so that theoretical results in previous sec-

tions apply—may not yield appreciable adversarial robustness in practice. In Section 2.5,

we provide empirical discussion of the bounds, and further provide some negative results

even in the MNIST setting in Section A.1.6.

Before we present our examples, we first set some notation. For a parameter θ and a

feature vector x ∈ X ⊂ Rp, we denote a deep network with L layers by x 7→ FL(θ;x) which

maps inputs x to an output y = F (θ;X) ∈ RK . In the classification setting, K denotes the
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number of classes, and FL,k(θ;x) is the k-th element of FL(θ;x); the final loss is computed

using the softmax loss

`(θ; (x, y)) = − log py(θ;x) where py(θ;x) :=
exp(FL,y(θ;x))∑K
k=1 exp(FL,k(θ;x))

(2.19)

where py(θ;x) is the softmax probability for class y ∈ {1, . . . ,K}.

We let θ = (θ1, . . . , θL), where θl ∈ Rdl,I×dl−1,O is the weight matrix at the l-th layer of

the deep network, where d0,O = p and dL,O = K. We denote a nonlinear operation function

after the l-th linear layer σl : Rdl,I → Rdl,O , so that output after the operation is given by

Fl(θ;x) := σl(θl · σl−1(θl−1 · · ·σ1(θ1 · x) · · · )). (2.20)

For convolutional neural networks, our notation σl includes both pooling operations and

activation functions. We also denote the Jacobian of x 7→ Fl(θ;x) as JxFl(θ;x).

To proceed with providing an upper bound on the Lipschitz constant of a neural network,

we assume a given level of smoothness for each respective layer of the network.

Assumption 2.5. For all l = 1, . . . , L, σl : Rdl,I → Rdl,O is L0
l -Lipschitz w.r.t. the `2-

norm ‖·‖2, and its Jacobian Jσl : Rdl,I → Rdl,O×dl,I is L1
l -Lipschitz w.r.t. (‖·‖op , ‖·‖2),

where ‖·‖op is the `2-operator (spectral) norm. Furthermore, L0
l > 0 for all l.

The last part of the assumption that L0
l > 0 for all layers in the network assures that

the network is not degenerate, as L0 = 0 defines a layer whose output is constant and

independent of the input. We now provide a few examples of layer-wise Lipschitz constants

for smooth operations common in convolutional neural networks.

Example 2.1 (Average pooling). Let σ : RdI → RdO be given by σ(x)j = 1
|Ij |
∑

a∈Ij xa,

where Ij ⊆ {1, . . . , dI} with minj |Ij | ≥ ml and maxj |Ij | ≤ mu. Further, let N be

the maximum number of times an index appears in Ij for j = 1, . . . , dO so that N :=

max1≤a≤dI
∑dO

j=1 1 {a ∈ Ij} ≤ dO. Then, σ satisfies Assumption 2.5 with L0 = 1
ml

√
Nmu

and L1 = 0. To see this, note that

|σ(x)j − σ(x′)j | =

∣∣∣∣∣∣ 1

|Ij |
∑
a∈Ij

(xa − x′a)

∣∣∣∣∣∣ ≤ 1

ml

∣∣∣∣∣∣
∑
a∈Ij

(xa − x′a)

∣∣∣∣∣∣ ≤
√
mu

ml

∥∥∥xIj − x′Ij∥∥∥2
,
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where xIj =
∑

a∈Ij xaea. Then,

∥∥σ(x)− σ(x′)
∥∥

2
=

 dO∑
j=1

(σ(x)j − σ(x′)j)
2

1/2

≤
√
mu

ml

 dO∑
j=1

∥∥∥xIj − x′Ij∥∥∥2

2

1/2

≤
√
Nmu

ml

∥∥x− x′∥∥
2
.

Since σ is linear, we have L1 = 0.

Example 2.2 (Sigmoid). Let σ : Rd → Rd be the elementwise sigmoid activation σ(x)j =
1

1+e−xj
. Then, σ satisfies Assumption 2.5 with L0 = 1/4 and L1 = 1/10. To see this,

note that Jxσ(x), the Jacobian of x 7→ σ(x) is the diagonal matrix with i-th diagonal entry

σ′(x)i := d
dxi
σ(x)i = σ(x)i(1 − σ(x)i). L0 is given by the spectral norm of this matrix,

which is maxi σ
′(x)i ≤ maxi supx σ

′(x)i = 1/4. For L1, we first define σ′′(x)i := d2

dx2i
σ(x)i =

σ(x)i(1 − σ(x)i)(1 − 2σ(x)i) and note that supx σ
′′(x)i ≤ − (1−

√
3)(2−

√
3)

(3−
√

3)3
≤ 1

10 . Then, we

have

∥∥Jxσ(x)− Jxσ(x′)
∥∥

op
= max

i
|σ′(x)i − σ′(x′)i| ≤ max

i
sup
x,x′
|σ′(x)i − σ′(x′)i|

≤ max
i

sup
y
|σ′′(y)i|

∥∥x− x′∥∥∞ ≤ 1

10

∥∥x− x′∥∥
2
.

Example 2.3 (ELU). Let σ : Rd → Rd be the ELU activation with scale parameter α = 1:

σ(x)j = xj1 {xj ≥ 0}+ (exj − 1)1 {xj < 0} .

Then, σ satisfies Assumption 2.5 with L0 = L1 = 1.

The following proposition bounds the smoothness of the map x 7→ Fl(θ;x). To ease

notation, define

αl(θ) :=
l∏

j=1

L0
j ‖θj‖op and βl(θ) := αl(θ)

l∑
j=1

{
L1
j

(L0
j )

2
αj(θ)

}
. (2.21)

Assumption 2.5 guarantees βl(θ) is well-defined, as we consider non-degenerate networks

with L0
j > 0.

Proposition 2.2. Let Assumption 2.5 hold. For all l = 1, . . . , L, Fl(θ; ·) : Rd0,I → Rdl,O

is αl(θ)-Lipschitz w.r.t. the `2-norm ‖·‖2, and its Jacobian JxFl(θ; ·) : Rd0,I → Rdl,O×d0,I is

βl(θ)-Lipschitz w.r.t. (‖·‖op , ‖·‖2), where ‖·‖op is the `2-operator (spectral) norm.
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See Section A.2.8 for the proof. We can use these bounds to derive our desired bound

on the Lipschitz constant of the final output of the network (2.19). We defer its proof to

Section A.2.9.

Corollary 2.4. Let Assumption 2.5 hold. For the softmax loss defined by expression (2.19),

x 7→ ∇x`(θ; (x, y)) is
(√

2βL(θ) + αL(θ)2
)
-Lipschitz w.r.t. (‖·‖op , ‖·‖2).

2.5 Experiments

Our technique for distributionally robust optimization with adversarial training extends

beyond supervised learning. To that end, we present empirical evaluations on super-

vised and reinforcement learning tasks where we compare performance with empirical

risk minimization (ERM) and, where appropriate, models trained with the fast-gradient

method (2.3) (FGM) [116], its iterated variant (IFGM) [170], and the projected-gradient

method (PGM) [188]. PGM augments stochastic gradient steps for the parameter θ with

projected gradient ascent over x 7→ `(θ;x, y), iterating (for data point xi, yi)

∆xt+1
i (θ) := argmax

‖η‖p≤ε
{∇x`(θ;xti, yi)T η} and xt+1

i := ΠBε,p(xti)

{
xti + αt∆x

t
i(θ)

}
(2.22)

for t = 1, . . . , Tadv, where Π denotes projection onto Bε,p(xi) := {x : ‖x− xi‖p ≤ ε}.
The adversarial training literature (e.g. Goodfellow et al. [116]) usually considers ‖·‖∞-

norm attacks, which allow imperceptible perturbations to all input features. Since in most

scenarios it is reasonable to defend against weaker adversaries that instead perturb influ-

ential features more, we consider training against ‖·‖2-norm attacks. Namely, we use the

squared Euclidean cost for the feature vectors cx(x, x′) := ‖x− x′‖22 and define the overall

cost as the covariate-shift adversary (2.8) for WRM (Algorithm 2.1), and we use p = 2 for

FGM, IFGM, PGM training in all experiments; we still test against adversarial perturba-

tions with respect to the norms p = 2,∞. We use Tadv = 15 iterations for all iterative

methods (IFGM, PGM, and WRM) in training and attacks.

In Section 2.5.1, we visualize differences between our approach and ad-hoc methods

to illustrate the benefits of certified robustness. In Section 2.5.2 we consider supervised

learning problems where we adversarially perturb the test data for the MNIST and Stanford

Dogs [155] datasets. Finally, we consider a reinforcement learning problem in Section 2.5.3,

where the Markov decision process used for training differs from that for testing.
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WRM enjoys the theoretical guarantees of Sections 2.2 and 2.3 for large γ, but for

small γ (large adversarial budgets), WRM becomes a heuristic like other methods. In

Appendix A.1.4, we compare WRM with other methods on attacks with large adversarial

budgets. In Appendix A.1.5, we further compare WRM—which is trained to defend against

‖·‖2-adversaries—with other heuristics trained to defend against ‖·‖∞-adversaries. WRM

matches or outperforms other heuristics against imperceptible attacks, while it underper-

forms for attacks with large adversarial budgets.

2.5.1 Visualizing the benefits of certified robustness

For our first experiment, we generate synthetic data Z = (X,Y ) ∼ P0 by Xi
i.i.d.∼ N(02, I2)

with labels Yi = sign(‖x‖2 −
√

2), where X ∈ R2 and I2 is the identity matrix in R2.

Furthermore, to create a wide margin separating the classes, we remove data with ‖X‖2 ∈
(
√

2/1.3, 1.3
√

2). We train a small neural network with 2 hidden layers of size 4 and 2 and

either all ReLU or all ELU activations between layers, comparing our approach (WRM) with

ERM and the 2-norm FGM. For our approach we use γ = 2, and to make fair comparisons

with FGM we use

ε2 = ρ̂n(θWRM) = Wc(P
∗
n(θWRM), P̂n) = E

P̂n
[c(T (θWRM, Z), Z)], (2.23)

for the fast-gradient perturbation magnitude ε, where θWRM is the output of Algorithm 2.1.3

Figure 2.1 illustrates the classification boundaries for the three training procedures over

the ReLU-activated (Figure 2.1(a)) and ELU-activated (Figure 2.1(b)) models. Since 70%

of the data are of the blue class (‖X‖2 ≤
√

2/1.3), distributional robustness favors push-

ing the classification boundary outwards; intuitively, adversarial examples will come from

pushing blue points outwards across the boundary. ERM and FGM suffer from sensitivities

to various regions of the data, as evidenced by the lack of symmetry in their classifica-

tion boundaries. For both activations, WRM pushes the classification boundaries further

outwards than ERM or FGM. However, WRM with ReLUs still suffers from sensitivities

(e.g. radial asymmetry in the classification surface) due to the lack of robustness guaran-

tees. WRM with ELUs provides a certified level of robustness, yielding an axisymmetric

classification boundary that hedges against adversarial perturbations in all directions.

3For ELU activations with scale parameter 1, γ = 2 makes problem (2.2b) strongly concave over the
training data. ReLUs have no guarantees, but we use 15 gradient steps with stepsize 1/

√
t for both activa-

tions.
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(a) ReLU model (b) ELU model

Figure 2.1: Experimental results on synthetic data. Training data are shown in blue and red. Clas-
sification boundaries are shown in yellow, purple, and green for ERM, FGM, and WRM respectively.
The boundaries are shown with the training data as well as separately with the true class boundaries.
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(a) Synthetic data
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(b) MNIST

Figure 2.2: Empirical comparison between certificate of robustness (2.11) (blue) and test worst-case
performance (red) for experiments with (a) synthetic data and (b) MNIST. We omit the certificate’s
error term εn(t). The vertical bar indicates the achieved level of robustness on the training set
ρ̂n(θWRM).

Recall that our certificates of robustness on the worst-case performance given in The-

orem 2.2 applies for any level of robustness ρ. In Figure 2.2(a), we plot our certificate (2.11)

against the out-of-sample (test) worst-case performance supP :Wc(P,P0)≤ρ EP [`(θ;Z)] for WRM

with ELUs. Since the worst-case loss is hard to evaluate directly, we solve its Lagrangian

relaxation (2.6) for different values of γadv. For each γadv, we consider the distance to

adversarial examples in the test dataset

ρ̂test(θ) := E
P̂test

[c(Tγadv(θ, Z), Z)], (2.24)
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where P̂test is the test distribution, c(z, z′) := ‖x − x′‖22 +∞ · 1 {y 6= y′} as before, and

Tγadv(θ, Z) = argmaxz{`(θ; z) − γadvc(z, Z)} is the adversarial perturbation of Z (Monge

map) for the model θ. The worst-case losses on the test dataset are then given by

E
P̂test

[φγadv(θWRM;Z)] + γadvρ̂test(θWRM) = sup
P :Wc(P,Ptest)≤ρ̂test(θWRM)

EP [`(θWRM;Z)].

As anticipated, our certificate is almost tight near the achieved level of robustness ρ̂n(θWRM)

for WRM (2.10) and provides a performance guarantee even for other values of ρ.

2.5.2 Learning a more robust classifier

We now consider two real-world supervised-learning benchmarks. In the first, we use our

adversarial training method on the MNIST dataset in an unprincipled manner: we use a

fixed level γ but without prescribing this level to be such that the robust surrogate (2.2b) is

concave. For the more realistic Stanford Dogs dataset [155], we first present results where

we ran Algorithm 2.1 on a semantic feature space with γ chosen large enough to satisfy

bounds given in Section 2.4. We complement these experiments with results where we

ran Algorithm 2.1 in an unprincipled manner on raw pixel perturbations, analogous to our

MNIST results.

The MNIST dataset

For the MNIST dataset, we train small neural network classifiers consisting of 8× 8, 6× 6,

and 5×5 convolutional filter layers with ELU activations followed by a fully connected layer

and softmax output. We train WRM with γ = 0.04E
P̂n

[‖X‖2], and for the other methods

we choose ε as the level of robustness achieved by WRM (2.23).4 In the figures, we scale

the budgets 1/γadv and εadv for the adversary with Cp := E
P̂n

[‖X‖p].5

In Figure 2.2(b) we illustrate the validity of our certificate of robustness (2.11) for

the worst-case test performance for arbitrary level of robustness ρ. We see that our cer-

tificate provides a performance guarantee for out-of-sample worst-case performance. In

Figure 2.3, we compare our method against different adversarial training techniques; all

methods achieve > 99% test-set accuracy, implying there is little test-time penalty for

the robustness levels (ε and γ) used for training. It is thus important to distinguish the

4For this γ, φγ(θWRM; z) is strongly concave for 98% of the training data.
5For the standard MNIST dataset, C2 := EP̂n ‖X‖2 = 9.21 and C∞ := EP̂n ‖X‖∞ = 1.00.
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methods’ abilities to combat attacks. We test performance of the five methods (ERM,

FGM, IFGM, PGM, WRM) under PGM attacks (2.22) with respect to 2- and ∞-norms.

In Figures 2.3(a) and 2.3(b), all adversarial methods outperform ERM, and WRM offers

more robustness even with respect to these PGM attacks. Training with the Euclidean cost

still provides robustness to ∞-norm fast gradient attacks. We provide further evidence in

Appendix A.1.1.

In Figure 2.4(a), we study stability of the loss surface with respect to perturbations to

inputs. We note that small values of ρ̂test(θ), the distance to adversarial examples (2.24),

correspond to small magnitudes of ∇z`(θ; z) in a neighborhood of the nominal input, which

ensures stability of the model. Figure 2.4(a) shows that ρ̂test differs by orders of magnitude

between the training methods (models θ = θERM, θFGM, θIFGM, θPGM, θWRM); the trend is

nearly uniform over all γadv, with θWRM being the most stable. Thus, we see that our

adversarial-training method defends against gradient-exploiting attacks by reducing the

magnitudes of gradients near the nominal input.

Figure 2.4(b) presents qualitative examples that illustrate the utility of our approach.

For a single test datapoint, we adversarially perturb the image until the model misclassifies

it. We again consider WRM attacks and we decrease γadv until each model misclassifies the

input. The original label is 8, whereas on the adversarial examples IFGM predicts 2, PGM

predicts 0, and the other models predict 3. WRM’s “misclassifications” appear consistently

reasonable to the human eye (see Appendix A.1.2 for examples of other digits); WRM

defends against gradient-based exploits by learning a representation that makes gradients

point towards inputs of other classes. Together, Figures 2.4(a) and 2.4(b) depict our

method’s defense mechanisms to gradient-based attacks: creating a stable loss surface by

reducing the magnitude of gradients and improving their interpretability.

The Stanford Dogs dataset

We now test our approach in a more realistic classification scenario, where our goal is to

reliably classify images of dogs to one of 120 breeds using the Stanford Dogs dataset [155].

In our experiments, we use 2000 training images resized to 224 × 224 pixels, and use the

ResNet-50 network [124] pre-trained on the ImageNet dataset for initialization.

First, we begin with a principled experiment, where we choose γ based on concrete

upper bounds derived in the previous section. Due to the large size of the ResNet model,

our concrete upper bounds on the smoothness of this model become vacuous even when
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Figure 2.3: PGM attacks on the MNIST dataset. (a) and (b) show test misclassification error vs.
the adversarial perturbation level εadv for the PGM attack with respect to Euclidean and ∞ norms
respectively. The vertical bar in (a) indicates the perturbation level used for training the PGM,
FGM, and IFGM models as well as the estimated radius

√
ρ̂n(θWRM). For MNIST, C2 = 9.21 and

C∞ = 1.00.
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(a) ρ̂test vs. 1/γadv (b) Perturbations on a test datapoint

Figure 2.4: Stability of the loss surface. In (a), we show the average distance of the perturbed
distribution ρ̂test for a given γadv, an indicator of local stability to inputs for the decision surface.
The vertical bar in (a) indicates the γ we use for training WRM. In (b) we visualize the smallest
WRM perturbation (largest γadv) necessary to make a model misclassify a datapoint. More examples
are in Appendix A.1.2.

replace ReLU activations with its smooth counterparts. Therefore, we begin this subsection

by considering adversarial perturbations in the learned semantic feature space given by the

output of the pre-trained ResNet on the large ImageNet dataset. We use the pre-trained

network as a fixed feature extractor, and only fine-tune the last few layers following our

principled adversarial training procedure Algorithm 2.1, with γ chosen according to our

bounds in Section 2.4.
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Figure 2.5: Convergence of the inner problem (2.2b). We show the mean and standard error across
all datapoints of the loss l(θ; z) − γc(z, z0) with respect to iteration. The plot is shown for the the
first epoch of training.

We pass the images through the pre-trained ResNet architecture and extract the 7 ×
7 × 2048 semantic features (normalized to [0, 1]) before they are fed into the output layer.

Instead of passing the features through a global average pooling layer followed by a softmax

layer, as usually done when fine-tuning a ResNet on a new dataset, we design a classifier

with smooth activation functions (ELUs). Specifically, we use a convolutional layer with

1024 convolutions of kernel size 7 × 7 followed by an ELU, a fully connected layer with

120 outputs, and finally a softmax layer. For our experiments, we set γ = 105, observing

that for this value we satisfy have a smoothness upper bound (via the bound (2.21)) of

822.5. We set the number of iterations Tadv = 20 and the step size η = 10.0. Figure 2.5

shows the convergence of the supremum indicating that we have indeed solved the inner

problem (2.2b), which plots averages of the adversarial loss (2.2b) φγ(θ; zi) during the first

epoch of the training procedure. In Figure 2.6, we present classification errors under both

PGM and WRM attacks in the semantic feature space as in the last subsection.

We now illustrate the usefulness of our approach even large-scale scenarios where our

conservative bounds on smoothness given in Section 2.4 become too loose. We fine-tune

the whole ResNet-50 network on the Stanford Dogs dataset with Algorithm 2.1 with per-

turbations on raw pixels. We use γ = 1.0, and set the adversarial budget ε for the other

adversarial training algorithms as the level of robustness achieved, as in the MNIST ex-

periment. Figure 2.7 shows results over PGM (Figure 2.7(a)) and WRM (Figure 2.7(b))

attacks. We see that, as with the MNIST dataset, WRM is competitive against the other

baselines over a full range of test perturbations.
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(a) Test error vs. εadv for ‖ · ‖∞-PGM attack
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(b) Test error vs. 1/γadv for ‖ · ‖2-WRM attack

Figure 2.6: Semantic-space PGM and WRM attacks on the Stanford Dogs dataset.
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Figure 2.7: Pixel-space PGM and WRM attacks on the Stanford Dogs dataset.

2.5.3 Robust Markov decision processes

For our final experiments, we consider distributional robustness in the context of reinforce-

ment learning. In Chapter 3, we will consider a more extensive treatment of reinforcement

learning, especially when the uncertainty set P is large. For now, we consider a small subset

of reinforcement learning that is amenable to the principled adversarial training techniques

we have developed in this chapter. Namely, we consider distributional robustness in the con-

text of Q-learning [297], a model-free reinforcement learning technique. We consider Markov

decision processes (MDPs) (S,A, Psa, r) with state space S, action space A, state-action

transition probabilities Psa, and rewards r : S → R. The goal of a reinforcement-learning

agent is to maximize (discounted) cumulative rewards
∑

t λ
tE[r(st)] (with discount factor λ);
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this is analogous to minimizing EP [`(θ;Z)] in supervised learning. Robust MDPs consider

an ambiguity set Psa for state-action transitions. The goal is maximizing the worst-case

realization infP∈Psa
∑

t λ
tEP [r(st)], analogous to problem (2.1).

In a standard MDP, Q-learning learns a quality function Q : S×A → R via the iterations

Q(st, at)← Q(st, at) + αt

(
r(st) + λmax

a
Q(st+1, a)−Q(st, at)

)
(2.25)

such that argmaxaQ(s, a) is (eventually) the optimal action in state s to maximize cu-

mulative reward. When the underlying environment has a continuous state-space and we

represent Q with a differentiable function (e.g. [200]), we can modify the update (2.25) with

an adversarial state perturbation to incorporate distributional robustness. Namely, we draw

the nominal state-transition update ŝt+1 ∼ psa(s
t, at), and proceed with the update (2.25)

using the perturbation

st+1 ← argmin
s

{
r(s) + λmax

a
Q(s, a) + γc(s, ŝt+1)

}
. (2.26)

For large γ, we can again solve problem (2.26) efficiently using gradient descent. This

provides robustness to uncertainties in state-action transitions. For tabular Q-learning,

where we represent Q only over a discretized covering of the underlying state-space, we

can either neglect the second term in the update (2.26) and, after performing the update,

round st+1 as usual, or we can perform minimization directly over the discretized covering.

In the former case, since the update (2.26) simply modifies the state-action transitions

(independent of Q), standard results on convergence for tabular Q-learning (e.g. Szepesvári

and Littman [277]) apply under these adversarial dynamics.

We test our adversarial training procedure in the cart-pole environment, where the goal

is to balance a pole on a cart by moving the cart left or right. The environment caps

episode lengths to 400 steps and ends the episode prematurely if the pole falls too far from

the vertical or the cart translates too far from its origin. We use reward r(β) := e−|β|

for the angle β of the pole from the vertical. We use a tabular representation for Q with

30 discretized states for β and 15 for its time-derivative β̇ (we perform the update (2.26)

without the Q-dependent term). The action space is binary: push the cart left or right

with a fixed force. Due to the nonstationary, policy-dependent radius for the Wasserstein

ball, an analogous ε for the fast-gradient method (or other variants) is not well-defined.

Thus, we only compare with an agent trained on the nominal MDP. We test both models
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Environment Regular Robust

Original 399.7 ± 0.1 400.0 ± 0.0

Easier environments
Light 400.0 ± 0.0 400.0 ± 0.0
Long 400.0 ± 0.0 400.0 ± 0.0
Soft g 400.0 ± 0.0 400.0 ± 0.0

Harder environments
Heavy 150.1 ± 4.7 334.0 ± 3.7
Short 245.2 ± 4.8 400.0 ± 0.0

Strong g 189.8 ± 2.3 398.5 ± 0.3

Table 2.1: Episode length over 1000 trials
(mean ± standard error)
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Figure 2.8: Episode lengths during training. The
environment caps episodes to 400 steps.

with perturbations to the physical parameters: we shrink/magnify the pole’s mass by 2, the

pole’s length by 2, and the strength of gravity g by 5. The system’s dynamics are such that

the heavy, short, and strong-gravity cases are more unstable than the original environment,

whereas their counterparts are less unstable.

Table 2.1 shows performance of trained models over the original and all perturbed

MDPs. Both models perform similarly over easier environments, but the robust model

greatly outperforms in harder environments. Interestingly, as shown in Figure 2.8, the

robust model also learns more efficiently than the nominal model in the original MDP.

We hypothesize that a potential side-effect of robustness is that adversarial perturbations

encourage better exploration of the environment.

2.6 Discussion

Explicit distributional robustness of the form (2.5) is intractable except in limited cases.

We provide a principled method for efficiently guaranteeing distributional robustness with a

simple form of adversarial data perturbation. Using only assumptions about the smoothness

of the loss function `, we prove that our method enjoys strong statistical guarantees and

fast optimization rates for a large class of problems. The NP-hardness of certifying robust-

ness for ReLU networks, coupled with our empirical success and theoretical certificates for

smooth networks in deep learning, suggest that using smooth networks may be preferable

if we wish to guarantee robustness. Empirical evaluations indicate that our methods are
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in fact robust to perturbations in the data, and they match or outperform less-principled

adversarial training techniques. The major benefit of our approach is its simplicity and

wide applicability across many models and machine-learning scenarios.

There remain many avenues for future investigation. Our optimization result (Theo-

rem 2.1) applies only for small values of robustness ρ and to a limited class of Wasserstein

costs. Our statistical guarantees (Theorems 2.2 and 2.3) use ‖·‖∞-covering numbers as a

measure of model complexity, which can become prohibitively large for deep networks. In

a learning-theoretic context, where the goal is to provide insight into convergence behav-

ior as well as comfort that a procedure will “work” given enough data, such guarantees

are satisfactory, but this may not be enough in security-essential contexts. This problem

currently persists for most learning-theoretic guarantees in deep learning, and the recent

works of Bartlett et al. [23], Dziugaite and Roy [92], and Neyshabur et al. [212] attempt to

mitigate this shortcoming. Replacing our covering number arguments with more intricate

notions such as margin-based bounds [23] would extend the scope and usefulness of our

theoretical guarantees. Of course, the certificate (2.15) still holds regardless.

More broadly, this work focuses on small-perturbation attacks, and our theoretical guar-

antees show that it is possible to efficiently build models that provably guard against such

attacks. Our method becomes another heuristic for protection against attacks with large

adversarial budgets. Indeed, in the large-perturbation regime, efficiently training certifi-

ably secure systems remains an important open question. We believe that conventional

‖·‖∞-defense heuristics developed for image classification do not offer much comfort in the

large-perturbation/perceptible-attack setting: ‖·‖∞-attacks with a large budget can render

images indiscernible to human eyes, while, for example, ‖·‖1-attacks allow a concerted per-

turbation to critical regions of the image. Certainly ‖·‖∞-attack and defense models have

been fruitful in building a foundation for security research in deep learning, but moving

beyond them may be necessary for more advances in the large-perturbation regime.

In Chapter 3, we explore a particularly challenging rendition of the large-uncertainty

regime where the uncertainty set P may not even be known and data that could be used

to learn it is unavailable. We exploit synthetic data to learn a parametrization of P that

leads to tractable procedures for building distributionally robust models.
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Chapter 3

Balancing safety and performance

in high-uncertainty regimes

Show me how you drive and I’ll show you who you are.

— Dominic Toretto, Fast & Furious 6

In the last chapter, we studied how to solve distributionally robust optimization prob-

lems for sufficiently small uncertainty sets P. This chapter expands the horizon to consider

intractably large and potentially unbounded uncertainty sets P. In such regimes, overesti-

mation of uncertainty and leads to safe yet potentially useless models with low performance,

whereas underestimation of safety can be dangerous in safety-critical settings. Our over-

all approach will be to first learn an operational proxy for P that allows us to proceed

with a tractable distributionally robust optimization problem. We require that the learn-

ing process be done safely. Due to the high-uncertainty, this requirement necessitates a

learning process that does not collect data or otherwise interact with the environment in a

potentially dangerous manner. That is, we use synthetic data to learn P. Although our ap-

proach is general, we frame our development within the specific application of autonomous

driving—more specifically, the extreme limit of autonomous driving that is autonomous

racing.

Balancing performance and safety is crucial to deploying autonomous vehicles in multi-

agent environments. In particular, autonomous racing is a domain that penalizes safe

but conservative policies, highlighting the need for robust, adaptive strategies. Current ap-

proaches either make simplifying assumptions about other agents or lack robust mechanisms

41



42 CHAPTER 3. BALANCING SAFETY & PERFORMANCE

for online adaptation. This work makes algorithmic contributions to both challenges. First,

to generate a realistic, diverse set of opponents, we develop a novel method for self-play

based on replica-exchange Markov chain Monte Carlo. Second, we propose a distribution-

ally robust bandit optimization procedure that adaptively adjusts risk aversion relative to

uncertainty in beliefs about opponents’ behaviors. We rigorously quantify the tradeoffs in

performance and robustness when approximating these computations in real-time motion-

planning, and we demonstrate our methods experimentally on autonomous vehicles that

achieve scaled speeds comparable to Formula One racecars.

3.1 Introduction

Current autonomous vehicle (AV) technology still struggles in competitive multi-agent sce-

narios, such as merging onto a highway, where both maximizing performance (negotiating

the merge without delay or hesitation) and maintaining safety (avoiding a crash) are im-

portant. The strategic implications of this tradeoff are magnified in racing. During the

2019 Formula One season, the race-winner achieved the fastest lap in only 33% of events

[95]. Empirically, the weak correlation between achieving the fastest lap-time and winning

suggests that consistent and robust performance is critical to success. In this work, we

investigate this intuition in the setting of autonomous racing (AR). In AR, an AV must lap

a racetrack in the presence of other agents deploying unknown policies. The agent wins if

it completes the race faster than its opponents; a crash automatically results in a loss.

AR is a competitive multi-agent game, a general setting challenging for a number of

reasons, especially in robotics applications. First, failures are expensive and dangerous, so

learning-based approaches must avoid such behavior or rely on simulation while training.

Second, the agents only partially observe their opponent’s state, and these observations do

not uniquely determine the opponent’s behavior. Finally, the agents must make decisions

online; the opponent’s strategy is a tightly-held secret and cannot be obtained by collecting

data before the competition.

Problem: We frame the AR challenge in the context of robust reinforcement learn-

ing. We analyze the system as a partially-observed Markov decision process (POMDP)

(S,A, Psa,O, r, λ), with state space S, action space A, state-action transition probabili-

ties Psa, observation space O, rewards r : O → R, and discount factor λ. Furthermore,
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we capture uncertainty in behaviors of other agents through an ambiguity1 set P for the

state-action transitions. Then the AV’s objective is

maximize inf
Psa∈P

∑
t

λtE[r(o(t))]. (3.1)

The obvious price of robustness [33] is that a larger ambiguity set ensures a greater degree

of safety while sacrificing performance against a particular opponent. If we knew the op-

ponent’s behavior, we would need no ambiguity set; equivalently, the ambiguity set would

shrink to the nominal state-action transition distribution. Our goal is to automatically trade

between performance and robustness as we play against opponents, which breaks down into

two challenges: parametrizing the ambiguity set to allow tractable inference and computing

the robust cost efficiently online.

Contributions: This chapter has three contributions: (i) a novel population-based self-

play method to parametrize opponent behaviors, (ii) a provably efficient approach to es-

timate the ambiguity set and the robust cost online, and (iii) a demonstration of these

methods on real autonomous vehicles. The name of our approach—FormulaZero—alludes

both to the Formula One racing league and the fact that we use self-play (and no demon-

strations) to learn competitive behaviors, similar to the approach of AlphaZero [263].

Section 3.1.1 gives context to our learning problem, including connections to classi-

cal control techniques. In Section 3.2, we describe the first challenge: learning how to

parametrize the ambiguity set P. Rather than directly consider the continuous action space

of throttle and steering outputs, we synthesize a library of “prototype” opponent behaviors

offline using population-based self-play. When racing against a particular opponent, the

agent maintains a belief vector w(t) of the opponent’s behavior patterns as a categorical

distribution over these prototype behaviors. We then parametrize the ambiguity set as a

ball around this nominal belief w(t).

The second challenge, presented in Section 3.3, is an online optimization problem,

wherein the agent iteratively updates the ambiguity set (e.g. updates w(t)) and computes

the robust cost of this set. In other words, the agent attempts to learn the opponent’s be-

havior online to maximize its competitive performance. Since this optimization occurs on a

moving vehicle with limited computational resources, we provide convergence results that

1Ambiguity is a synonym for uncertainty [111]. Formal descriptions in this work use the term ambiguity.
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highlight tradeoffs of performance and robustness with respect to these budgets. Finally,

Section 3.4 details the practical implications of the theoretical results, emergent properties

of the method, and the experimental performance of our approach.

3.1.1 Related work

Reinforcement learning (RL) has achieved unprecedented success on classic two-player

games [e.g. 263], leading to new approaches in partially-observable games with continu-

ous action spaces [12, 32]. In these works, agents train via self-play using Monte Carlo tree

search [53, 274] or population-based methods [143, 144]. The agents optimize expected per-

formance rather than adapt to individual variations in opponent strategy, which can lead

to poor performance against particular opponents [20]. In contrast, our method explicitly

incorporates adaptivity to opponents.

Robust approaches to RL and control (like this work) explicitly model uncertainty. In

RL, this amounts to planning in a robust MDP [214] or a POMDP [147]. Early results

Bagnell et al. [17] and Nilim and El Ghaoui [214] describe solutions for robust planning

in (PO)MDPs with tabular state/action spaces. Equivalent results in control are analyt-

ical formulations applicable to uncertainty in linear time-invariant systems [83, 291, 311].

Recent works [278, 230, 190, 113] describe minimax and adversarial RL frameworks for non-

linear systems and continuous action spaces. Like our approach, these methods fall broadly

under the framework of robust optimization. Unlike these works, which consider worst-

case planning under a fixed uncertainty distribution, our approach updates the distribution

online.

Our approach is designed to adjust the agent’s evaluation of short-term plans relative

to uncertainty in the opponent’s behavior rather than provide worst-case guarantees. Com-

plementary to and compatible with our approach are techniques which provide the latter

guarantees, such as robust model predictive control [25]. Extensions of robust control for

nonlinear systems and complex uncertainty models are also compatible (e.g. Majumdar

and Tedrake [189], Althoff and Dolan [7], Gao et al. [106]). In contrast to formal ap-

proaches which explicitly guarantee robustness, some authors have proposed multitask or

meta-learning approaches (e.g. Caruana [58], He et al. [123], Finn et al. [97]) can implicitly

learn to play against multiple opponents. However, such techniques do not explicitly model

uncertainty or quantify robustness, which we deem necessary in the high-risk, safety-critical

regime.
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Planning in belief space is closely related to our approach and is well-studied in robotics

[see e.g. 161]. Specifically in the AV domain, Galceran et al. [102] and Ding and Shen [79]

use a Bayesian approach to plan trajectories for AVs in belief space; like this work, both of

these approaches characterize the other agent’s behavior in the environment categorically.

Also similar to this work, Van Den Berg et al. [287] use a sampled set of goals obtained by

planning from other agents’ perspectives. The main difference in this work from standard

belief-space planning formulations is inspired by recent results from distributionally robust

optimization (DRO) in supervised-learning settings [28, 208]. These methods reweight

training data to reduce the variance of the training loss [208]. While others apply DRO to

episodic RL for training offline [265, 268], we reweight the belief online.

Online methods for control fall under the umbrella of adaptive control [169, 15]. Dean

et al. [74] and Agarwal et al. [4] establish regret bounds for adaptive control methods applied

to LTI systems, tightening the relationship to online learning. Due to the more general

nature of our problem, we draw from the adversarial multi-armed bandit framework of

online learning [3, 55, 261].

Our belief state corresponds to a categorical distribution of polices governing an oppo-

nent’s next action; the goal is to predict which strategy the opponent is using and compute

the best response. This approach is similar to game-theoretic methods for AR and AV

decision making that use the standard heuristic of iterated best response. Our work is

distinct from previous work, which either assumes that all agents act with respect to the

same cost function, simplifying the structure of the game [179, 296]; or, without this sim-

plifying assumption, that uses demonstrations to learn possible sets of policies [252, 300].

In constrast, we learn the set of policies without demonstrations and use DRO to robustly

score the AV’s plans.

We convert the problem of predicting opponent behavior in a continuous action space

into an adversarial bandit problem by learning a set of cost functions that characterize a

discrete set of policies. As a result, we would like the opponent models to be both near-

optimal and diverse. We use determinantal point processes (DPPs) [168] to sample diverse

configurations of the parameter space. However, first we must learn a DPP kernel, which

requires that we efficiently sample competitive cost functions from the larger configuration

space. Since we assume no structure to the set of competitive cost functions, we employ a

Markov chain Monte Carlo (MCMC) method. Complementary methods include variational-

inference (e.g. Arenz et al. [10]) and evolutionary (e.g. Mouret and Clune [203]) approaches,
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which can be challenging to scale up to unstructured, high-dimensional settings of which

we have little prior domain knowledge. In our approach, we update the classic simulated

tempering method [192] with a novel annealing scheme [159, 59] designed for population

diversity. We describe this approach next.

3.2 Offline population synthesis

The goal of offline population synthesis is to generate a diverse set of competitive agent

behaviors. Formally, we would like to sample pairs (x, θ) ∈ X ×Θ that are both diverse as

well as achieve small values for a function f(x, θ). In our AV application, θ parametrizes a

neural network used to sample trajectories to follow, x is a weighting of various cost func-

tions that the vehicle uses to select trajectories from the samples, and f is the simulated

lap time. With this motivation, we treat the method in more generality assuming (as in our

application) that while we can differentiate f(x, θ) with respect to θ, x represents hyperpa-

rameters and admits only function evaluations f(x, θ) rather than first-order developments.

The key challenge is that we do not a priori know a metric with which to evaluate diversity

(e.g., a kernel for a DPP) nor do we know a base value of f that is deemed acceptable for

competitive performance.

We make this problem more tractable via temperature-based Markov chain Monte Carlo

(MCMC) and annealing methods [194, 121, 159, 59, 140, 136]. Our goal is to sample from

a Boltzmann distribution g(x, θ;β(t)) ∝ e−β(t)f(x,θ), where β(t) is an inverse “temperature”

parameter that grows (or “anneals”) with iterations t. When β(t) = 0, all configura-

tions (x, θ) are equally likely and all MCMC proposals are accepted; as β(t) increases,

accepted proposals favor smaller f . Unlike standard hyperparameter optimization methods

[31, 143] that aim to find a single near-optimal configuration, our goal is to sample a diverse

population of (x, θ) achieving small f(x, θ). As such, our approach—annealed adaptive

population tempering (AAdaPT)—maintains a population of configurations and employs

high-exploration proposals based on the classic hit-and-run algorithm [269, 24, 182].

3.2.1 AAdaPT

AAdaPT builds upon replica-exchange MCMC, also called parallel tempering, which is

a standard approach to maintaining a population of configurations [275, 109]. In parallel

tempering, one maintains replicas of the system at L different temperatures β1 ≥ β2... ≥ βL
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Algorithm 3.1 AAdaPT

input: annealing parameter α, vertical steps V , horizontal exchange steps E, temperature levels

L, population size d, initial samples {xi,j , θi,j}j∈{1,D}i∈{1,L} , iterations T

Evaluate f(xi,j , θi,j)
for t = 1 to T

for j = 1 to L do anneal βL−j+1(t) (problem (3.2))
for k = 1 to V asynchronously, in parallel

for each population i asynchronously, in parallel
Sample x̂i,j according to hit-and-run proposal
Evaluate f(x̂i,j , θi,j)
Apply MH criteria to update xi,j

Train θi,j via SGD
for e = 1 to E do horizontal swaps (Appendix B.1)

(which are predetermined and fixed), defining the density of the total configuration as∏L
i=1 g(xi, θi;βi). The configurations at each level perform standard MCMC steps (also

called “vertical” steps) as well as “horizontal” steps wherein particles are swapped between

adjacent temperature levels (see Figure 3.1). Horizontal proposals consist of swapping

two configurations in adjacent temperature levels uniformly at random; the proposal is

accepted using standard Metropolis-Hastings (MH) criteria [121]. The primary benefit of

maintaining parallel configurations is that the configurations at “colder” levels (higher β)

can exploit high-exploration moves from “hotter” levels (lower β) which “tunnel” down

during horizontal steps [109]. This approach allows for faster mixing times, particularly

when parallel MCMC proposals occur concurrently in a distributed computing environment.

Maintaining a population: In AAdaPT (Algorithm 3.1), we maintain a population of

D configurations at each separate temperature level. Note that this design always maintains

D individuals at the highest performance level (highest β). The overall configuration density

is
∏L
i=1

∏D
j=1 g(xi,j , θi,j ;βi(t)). Similar to parallel tempering, horizontal proposals are cho-

sen uniformly at random from configurations at adjacent temperatures (see Appendix B.1).

We get the same computational benefits of fast mixing in distributed computing environ-

ments and a greater ability to exploit high-temperature “tunneling” due to the greater

number of possible horizontal exchanges between adjacent temperature levels. The benefit

of the horizontal steps is even more pronounced in the RL setting as only vertical steps

require new evaluations of f (e.g. simulations).
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High-exploration vertical proposals: Another benefit of maintaining parallel popu-

lations is to improve exploration. We further improve exploration by using hit-and-run

proposals [269, 24, 182] for the vertical MCMC chains. Namely, from a current point

(x, θ) we sample a uniformly random direction û and then choose a point uniformly on the

segment X ∩ ({x + R · û} × {θ}). This approach has several guarantees for efficient mix-

ing [182, 183, 184]. Note that in our implementation the MCMC steps are only performed

on x, while θ updates occur via SGD (see below).

Adaptively annealed temperatures: A downside to parallel tempering is the need

to determine the temperature levels βi beforehand. In AAdaPT. we adaptively update

temperatures. Specifically, we anneal the prescribed horizontal acceptance probability of

particle exchanges between temperature levels as αt/(L−1) for a fixed hyperparameter α ∈
(0, 1). Define the empirical acceptance probability of swaps of configurations between levels

i− 1 and i as

pi−1,i :=
1

D2

D∑
j=1

D∑
k=1

(yj,ki−1,i)
βi−1−βi

yj,ki−1,i := min
(

1, ef(xi−1,j ,θi−1,j)−f(xi,k,θi,k)
)
.

Then, at the beginning of each iteration (in which we perform a series of vertical and

horizontal MCMC steps), we update the βi(t) sequentially; we fix βL(t) := βL = 0 and for

a given βi, we set βi−1 by solving the following convex optimization problem:

minimize
{βi−1≥βi, pi−1,i≤α

t
(L−1) }

βi−1, (3.2)

which binary search efficiently solves. This adaptive scheme is crucial in our problem setting,

where we a priori have no knowledge of appropriate scales for f and, as a result, β. In

practice, we find that forcing βi to monotonically increase in t yields better mixing, so we

set βi(t) = max(βi(t− 1), β̂i(t)), where β̂i(t) solves problem (3.2).

Evaluating proposals via self-play: We apply AAdaPT to a multi-agent game. It is

only possible to evaluate f(x, θ) in the context of other agents. Since we are interested in

the setting where demonstrations from potential opponents are either difficult to obtain or

held secret, we iteratively evaluate f via self-play. For each configuration (x, θ), we place
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Figure 3.1: Illustration of AAdaPT. Vertical MCMC steps (jagged black arrows) occur in paral-
lel for all xi,j , followed by gradient descent steps for trainable parameters θi,j (magenta arrows)
and horizontal MCMC swaps of configurations between populations (curved black arrows). Then,
temperatures βi(t) are updated via problem (3.2).

two vehicles with the same policy in the simulated environment and perform a race (with

f(x, θ) being the lap time of the agent that starts behind the other). Vertical MCMC steps

propose new x, which are then accepted according to MH criteria. After a number of vertical

iterations, a stochastic gradient descent (SGD) step is applied to θ (which maximizes the

likelihood of the trajectories chosen by the agent with cost functions parametrized by x).

Following this process, the updated agents in adjacent temperature levels are exchanged

via horizontal MCMC steps. Although we choose f(x, θ) as the laptime, explicit entropic

terms can also be included to further encourage diversity within a single vertical chain or

across the population.

At the conclusion of AAdaPT, we use the coldest population of D agents at inverse
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temperature β1(T ) to build a DPP sampler. Specifically, define the matrix H via configu-

rations x1,· at the lowest temperature

Hab = ‖x1,a − x1,b‖. (3.3)

Then we define the DPP kernel K as Kab = exp
(
−H2

ab/σ
2
)

with a scale parameter σ = 0.5,

and we sample d ≤ D configurations from this DPP.

3.3 Online learning with computation budgets

Now we exploit the population of d learned prototype behaviors to enable robust perfor-

mance. The agent’s (our) goal is to act robustly against uncertainty in opponent behaviors

and adapt online to a given opponent. We parametrize the agent’s (stochastic) policy as

follows. At each time step, we sample goal states (consisting of pose and velocity) via a

generative model G(θ) parametrized by θ (as in Section 3.2). For a given goal state, we

compute the parameters of a cubic spline that reaches the goal by solving a nonconvex

trajectory optimization problem [196]; on this proposed trajectory we evaluate a collection

of cost functions (such as the maximum curvature or minimum acceleration along the path)

weighted by the vector x (recall Section 3.2), similar to Sadat et al. [251] (see Appendix B.4

for a description of all costs). Finally, we choose the sampled goal trajectory with minimum

robust cost and perform an action to track this trajectory.

Some of the costs that evaluate the utility of a goal state involve beliefs about the

opponent’s future trajectory. For a goal p, we rewrite the performance objective at time t

with respect to a protoype opponent i as a receding-horizon cost

ci(t; p) := −
∑
s>t

λs−tE[r(o(s); p)],

where we omit dependence on the agent’s cost weights x for convenience. We parametrize

the agent’s belief of the opponent’s behavior as a categorical distribution of beliefs over

the prototypes. Specifically, let w(t) ∈ ∆ be a weight vector at a given time t, where

∆ := {a ∈ Rd+ | aT1 = 1}, and let P0(t) := Categorical(w(t)). Then P0(t) is the nominal

distribution describing the agent’s belief about the opponent. Furthermore, we consider

ambiguity sets P(t) defined by divergence measures on the space of probability measures

over ∆. For a convex function φ with φ(1) = 0, the φ-divergence between distributions
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P and Q is Dφ (P ||Q) =
∫
φ(dPdQ)dQ.2 We use sets P(t) := {Q : Dφ (Q||P0) (t) ≤ ρ} where

ρ > 0 is a specified constant. Our implementation employs the χ2-divergence φ(t) = t2− 1.

Having defined the ambiguity set P(t) and the cost with respect to each prototype oppo-

nent, we rewrite the robust performance objective (3.1) to clearly illustrate the optimization

problem. Let C(t; p) be a random variable representing the expected cost with respect to

the belief of the opponent (and goal state p). Then the robust cost at time t is

sup
Q∈P(t)

EQ[C(t; p)] = sup
q:
∑
i wiφ(

qi
wi

)≤ρ

∑
i

qici(t; p). (3.4)

When ρ = 0, this is the expected cost under P0; larger ρ adds robustness. Solving the

convex optimization problem (3.4) first requires computing the costs ci(t). Using λ ≥ 0 for

the constraint Dφ (Q||P0) ≤ ρ, a partial Lagrangian is

L(q, λ) =
∑
i

qici(t)− λ

(∑
i

wiφ (qi/wi)− ρ

)
.

The corresponding dual function is v(λ) = supq∈∆ L(q, λ), and minimizing v(λ) via bisection

yields the solution to problem (3.4). Maximizing L(q, λ) with respect to q for a given λ

requires O(d) time using a variant of median-based search [87] (see Appendix B.2). Thus,

computing an ε-suboptimal solution uses O(d log(1/ε)) time.

The supremum in the robust cost (3.4) is over belief ambiguity. Thus, our approach

generalizes beyond the goal-sampling and trajectory-optimization approach presented at

the beginning of this section; it is compatible with any policy that minimizes a cost ci(t)

with respect to a parametrization for opponent i’s policy. In this way, it is straightforward

to combine our framework with robust model predictive control formulations that have

rigorous stability guarantees.

In order to perform competitive actions, the agent updates the ambiguity set P(t) and

computes the robust cost (3.4) on an embedded processor on board the vehicle in real-time

(e.g. within 100 milliseconds). In the next two subsections, we describe how to perform both

operations in the presence of a severely limited computational budget, and we quantitatively

analyze the implications of the budget on the robustness/performance tradeoff.

2These types of divergences are also commonly written as f -divergences. We use φ for notational clarity.
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3.3.1 Approximating the robust cost

For a large library of prototypical opponents (large d), computing every ci in the objective

(3.4) is prohibitively expensive. Instead, we consider an empirical approximation of the

objective, where we draw Nw indices Jk
i.i.d.∼ P0(t) (where Nw < d) and consider the weighted

sum of these costs cjk . Specifically, we define the empirical approximation PNw := {q :

Dφ (q||1/Nw) ≤ ρ} to P and solve the following empirical version of problem (3.4):

maximize
q∈PNw

∑
k

qkcjk(t; p). (3.5)

This optimization problem (3.5) makes manifest the price of robustness in two ways. The

first involves the setup of the problem—computing the cjk . First, we denote the empirical

distribution as ŵ(t) with ŵi(t) =
∑Nw

k 1{jk = i}/Nw. Even for relatively small Nw/d,

ŵ(t) concentrates closely around w(t) (see e.g. Weissman et al. [299] for a high-probability

bound). Thus, when the vehicle’s belief about its opponent w(t) is nearly uniform, the jk

values have few repeats. Conversely, when the belief is peaked at a few opponents, the

number of unique indices is much smaller than Nw, allowing faster computation of cjk . The

short setup-time enables faster planning or, alternatively, the ability to compute the costs

cjk with longer horizons. Therefore, theoretical performance automatically improves as the

vehicle learns about the opponent and the robust evaluation approaches the true cost.

The second way we illustrate the price of robustness is by quantifying the quality of

the approximation (3.5) with respect to the number of samples Nw. For shorthand, define

the true expected and approximate expected costs for goal p and distributions Q and q

respectively as

R(Q; p) := EQ[C(t; p)], R̂(q; p) :=
1

Nw

Nw∑
k=1

qkcjk(t; p).

Then, we have the following bound:

Proposition 3.1 (Approximation quality). Suppose C(t; p) ∈ [−1, 1] for all t, p. Let Aρ =
2(ρ+1)√
1+ρ−1

and Bρ =
√

8(1 + ρ). Then with probability at least 1 − δ over the Nw samples

Jk
i.i.d.∼ P0, ∣∣∣∣ sup

q∈PNw
R̂(q; p)− sup

Q∈P
R(Q; p)

∣∣∣∣ ≤ 4Aρ

√
log(2Nw)

Nw
+Bρ

√
log 2

δ

Nw

See Appendix B.2 for the proof. Intuitively, increasing accuracy of the robust cost requires
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more samples (larger Nw), which comes at the expense of computation time. Similar to

computing the full cost (3.4), ε-optimal solutions require O(Nu log(1/ε)) time for Nu ≤ Nw

unique indices jk. In our experiments (cf. Section 3.4), most of the computation time

involves the setup to compute the Nu costs cjk .

3.3.2 Updating the ambiguity set

To maximize performance against an opponent, the agent updates the ambiguity set P as

the race progresses. Since we consider φ-divergence balls of fixed size ρ, this update involves

only the nominal belief vector w(t). As with computation of the robust cost, this update

must occur efficiently due to time and computational constraints.

For a given sequence of observations of the opponent oHopp(t) := {oopp(t), oopp(t −
1), ..., oopp(t − h + 1)} over a horizon h, we define the likelihood of this sequence coming

from the ith prototype opponent as

lhi (t) = log dP
(
ohopp(t)|G(θ1,i)

)
, (3.6)

where G(θ1,i) is a generative model of goal states for the ith prototype opponent. Letting l̄

be a uniform upper bound on lhi (t), we define the losses Li(t) := 1− lhi (t)/l̄.

If we had enough time/computation budget, we could compute Li(t) for all prototype

opponents i and perform an online mirror descent update with an entropic Bregman diver-

gence [261]. In a resource-constrained setting, we can only select a few of these losses, so

we use EXP3 [16] to update w(t). Unlike a standard adversarial bandit setting, where we

pull just one arm (e.g.compute a loss Li(t)) at every time step, we may have resources to

compute up to Nw losses in parallel at any given time (the same indices Jk discussed in

Section 3.3.1). Denote our unbiased subgradient estimate as γ(t):

γi(t) =
1

Nw

Nw∑
k=1

Li(t)

wi(t)
1{Jk = i}. (3.7)

Algorithm 3.2 describes our slightly modified EXP3 algorithm, which has the following

expected regret.

Proposition 3.2. Let z := d−1
Nw

+ 1. Algorithm 3.2 run for T iterations with stepsize

η =

√
2 log(d)
zT has expected regret bounded by

∑T
t=1 E

[
γ(t)T (w(t)− w?)

]
≤
√

2zT log(d).
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Algorithm 3.2 EXP3 with Nw arm-pulls per iteration

Input: Stepsize sequence ηt, w(0) := 1/d, steps T
for t = 0 to T − 1

Sample Nw indices Jk
i.i.d.∼ Categorical(w(t))

Compute γ(t) (Equation (3.7))

wi(t+ 1) := wi(t) exp(−ηtγi(t))∑d
j=1 wj(t) exp(−ηtγj(t))

See Appendix B.2 for the proof. This regret bound looks similar to that if we simply ran

Nw standard EXP3 steps per iteration t (in which case z = d/Nw). However, our approach

enables parallel computation which is critical in our time-constrained setting. Note that the

“multiple-play” setting we propose here has been studied before with better regret bounds

but higher computational complexity per iteration [285, 309]. We prefer our approach for

its simplicity and ability to be easily combined with the robust-cost computation.

3.4 Experiments

In this section we first describe the AR environment used to conduct our experiments.

Next we explore the hyperparameters of the algorithms in Section 3.2 and 3.3, identifying a

preferred configuration. Then we consider the overarching hypothesis: online adaptation can

improve the performance of robust control strategies. We show the statistically significant

results affirming the theory and validate the approach’s performance on real vehicles.

The experiments use an existing low-cost 1/10th-scale, Ackermann-steered AV (Fig-

ure 3.2). Additionally, we create a simulator and an associated OpenAI Gym API [51]

suitable for distributed computing. The simulator supports multiple agents as well as de-

terministic executions. We experimentally determine the physical parameters of the agent

models for simulation and use SLAM to build the virtual track as a mirror of a real location

(see Figure 3.4). The hardware specifications, software, and simulator are open-source3 (see

Appendices B.3 and B.4 for details).

The agent software uses a hierarchical planner [107] similar to Ferguson et al. [96]. The

key difference is the use of a masked autoregressive flow (MAF) [237] which provides the

generative model for goal states, G(θ). Belief inference and robust cost computation require

sampling and evaluating the likelihood of goal states. MAFs can evaluate likelihoods quickly

but generate samples slowly. Inspired by Oord et al. [220] we overcome this inefficency by

3https://github.com/travelbureau/f0_icml_code

https://github.com/travelbureau/f0_icml_code
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Figure 3.2: Components of the 1/10-scale vehicle

training a “student” inverse autogressive flow (IAF) [158] on MAF samples. Given a sample

of goals from the IAF, the agent synthesizes dynamically feasible trajectories following

McNaughton [196]. Each sample is evaluated according to Equation 3.4; the weights of the

cost functions are learned by AAdaPT (and formal definitions of the cost components are

in Appendix B.4). Belief updates use Algorithm 3.2 using the MAF to compute the losses

Li(t).

3.4.1 Offline population synthesis

We run AAdaPT with L = 5 populations, D = 160 configurations per population, and

T = 100 iterations. For vertical MCMC steps, we randomly sample 16 configuratons per

population and perform V = 2 iterations of 5 hit-and-run proposals. Furthermore, we

perform E = DL2/αt/(L−1) horizontal steps (motivated by the fact fact that “tunneling”

from the highest-temperature level to the coldest takes O(L2) accepted steps). Finally, for

training θ, we use Adam [156] with a learning rate of 10−4.

Figure 3.3 shows results with 5 choices for the most influential hyperparameter, the

annealing rate: α ∈ {0.75, 0.80, 0.85, 0.90, 0.95}. Figure 3.3(a) displays 95%-confidence in-

tervals for the mean laptime in the coldest level. The annealing rates α ∈ {0.75, 0.80, 0.90}
all result in comparable performance of 22.95 ± 0.14 (mean ± standard error) seconds at

the end of the two-lap run. Figure 3.3(b) illustrates a metric for measuring diversity, the

Frobenius norm of the Mahalanobis distance matrix (3.3). We see that α = 0.9 results in

the highest diversity while also attaining the best performance. Thus, in further experi-

mentation, we use the results from the run conducted with α = 0.9.
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(a) Performance vs. iteration
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(b) Diversity vs. iteration

Figure 3.3: Hyperparameter selection for AAdaPT. (a) 95%-confidence intervals for f(x, θ) in the
coldest temperature level. (b) Frobenius norm of the Mahalanobis distance matrix H (3.3). The
value α = 0.9 achieves the best performance and diversity.

(a) Rollouts from 5 agents (b) Snapshot trajectories

Figure 3.4: Qualitative illustrations of multimodal behavior in the learned population of cost
functions

Figure 3.4 illustrates qualitative differences between cost functions. Figure 3.4(a) dis-

plays trajectories for agents driven using 5 cost functions sampled from the learned DPP.

The cornering behavior is quite different between the trajectories. Figure 3.4(b) displays

the trajectories chosen by all 160 agents in the population at β1(T ) at various snapshots

along the track. There is a wider spread of behavior near turns than areas where the car

simply drives straight.
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Table 3.1: The effect of distributional robustness on aggressiveness

Agent % of iTTC values < 0.5s

ρ/Nw = 0.001 7.86± 0.90
ρ/Nw = 0.025 6.46± 0.78
ρ/Nw = 0.2 4.75± 0.65
ρ/Nw = 0.4 5.41± 0.74
ρ/Nw = 0.75 5.50± 0.82
ρ/Nw = 1.0 5.76± 0.84

3.4.2 Simulated experiments

We conduct a series of tests in simulation to determine the effects of distributional robustness

and adaptivity on overall safety and performance. For a given robustness level ρ/Nw ∈
{0.001, 0.025, 0.2,

0.4, 0.75, 1.0} (with Nw = 8 for all experiments), we simulate 40 two-lap races against each

of the d = 10 diverse opponents sampled from the DPP. For fair comparisons, half of the

races have the opponent starting on the outside and the other half with the opponent on

the inside of the track. Importantly, these experiments involve only the most elite policies

from the temperature level β1(T ). Since the physical characteristics of the vehicles are

identical, win rates between elite policies significantly greater than 0.5 are meaningful. In

contrast, against a set of weaker opponents sampled via DPP from the 3rd temperature level

β3(T ), the win-rate (fraction of races that our agent from the coldest temperature wins) is

0.848± 0.012.

Effects of distributional robustness We test the hypothesis that distributional ro-

bustness results in more conservative policies. For every race both agents have a fixed

robustness level ρ and no adaptivity. To measure aggressiveness/conservativeness, we con-

sider instantaneous time-to-collision (iTTC) of the vehicles during the race (see Appendix

B.6). Smaller iTTC values imply more dangerous scenarios and more aggressive policies.

In Table 3.1, we track the rate at which iTTC < 0.5 seconds. As expected, aggressiveness

decreases with robustness (the rate of small iTTC values decreases as ρ increases). The

trend is a+ b log(ρ), where a = 5.16± 0.34 and b = −0.36± 0.10 (R2 = 0.75).
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Table 3.2: The effect of adaptivity on win-rate

Win-rate Win-rate
Agent Non-adaptive Adaptive p-value

ρ/Nw = 0.001 0.593± 0.025 0.588± 0.025 0.84
ρ/Nw = 0.025 0.593± 0.025 0.600± 0.024 0.77
ρ/Nw = 0.2 0.538± 0.025 0.588± 0.025 0.045
ρ/Nw = 0.4 0.503± 0.025 0.573± 0.025 0.0098
ρ/Nw = 0.75 0.513± 0.025 0.593± 0.025 0.0013
ρ/Nw = 1.0 0.498± 0.025 0.590± 0.025 0.00024

Effects of adaptivity Now we investigate the effects of online learning on the outcomes

of races. Figure 3.5(a) shows that Algorithm 3.2 identifies the opponent vehicle within ap-

proximately 150 timesteps (15 seconds), as illustrated by the settling of the regret curve.4

Given evidence that the opponent model can be identified, we investigate whether adap-

tivity improves performance, as measured by win-rate. Table 3.2 displays results of paired

t-tests for multiple robustness levels (with a null-hypothesis that adaptivity does not change

the win-rate). Each test compares the effect of adaptivity for our agent on the 400 paired

trials (and the opponents are always nonadaptive). Adaptivity significantly improves per-

formance for the larger robustness levels ρ/Nw ≥ 0.2. As hypothesized above, adaptivity

automatically increases aggressiveness as the agent learns about its opponent and samples

fewer of the other arms to compute the empirical robust cost (3.5). This effect is more

prominent when robustness levels are greater, where adaptivity brings the win-rate back to

its level without robustness (ρ/Nw = 0.001). Thus, the agent successfully balances safety

and performance by combining distributional robustness with adaptivity.

3.4.3 Real-world validation

The real world experiments consist of races between agents 22 and 33; we examine the

transfer of the opponent modeling approach from simulation to reality. In Figure 3.5(b)

we plot 33’s cumulative regret; it takes roughly 4 times as many observations relative

to simulation-based experiments to identify the opponent (agent 22). We demonstrate

the qualitative properties of the experiments in a video of real rollouts synchronized with

4We omit 3 of the regret lines for clarity in the plot.
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(a) Simulation (b) Real

Figure 3.5: 95%-confidence intervals for regret using Nw = 8 arms in (a) simulation and (b) reality.
The legend in (a) denotes opponent id and the opponent in (b) has id 22. Our agent has id 33.

corresponding simulations.5 State estimation error and measurement noise drive the gap

between simulated and real performance. First, both vehicle poses are estimated with a

particle filter, whereas simulation uses ground-truth states. Since we infer beliefs about an

opponent’s policy based on a prediction of their actions at a given state, pose estimation

error negatively impacts the accuracy of this inference. Second, the simulator only captures

the geometry of the track; in reality glass and metal surfaces significantly affect the LIDAR

range measurements, which in turn impact the MAF and IAF networks. The convergence

of the cumulative regret in Figure 3.5(b) reflects that, despite the simulation/reality gap,

our simulation-trained approach transfers to the real world. Diminishing the effect of the

simulation/reality gap is the subject of future work (see Appendix B.5).

3.4.4 Approximation analysis

Sampling Nw indices Jk
i.i.d.∼ P0(t) allows us to quickly compute the approximate robust

cost (Section 3.3.1) and perform a bandit-style update to the ambiguity set (Section 3.3.2).

Now we analyze the time-accuracy tradeoff of performing this sampling approximation

rather than using all d prototypical opponents at every time step. Figure 3.6(a) shows the

difference in regret for the same experiments as in Figure 3.5(a) if we perform full online

mirror-descent updates. Denoting the simulations in Figure 3.5(a) as S and those with

5https://youtu.be/7Yat9FZzE4g

https://youtu.be/7Yat9FZzE4g
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(a) Difference in regret (b) Difference in planning time

Figure 3.6: 95%-confidence intervals for the (a) difference in regret and (b) percent difference in
cumulative planning time when using sampling approximations vs. online mirror descent. Online
mirror descent yields lower regret at the expense of longer planning times.

the full mirror descent update as M , we compute difference as RegretS − RegretM . As

expected, the difference is positive, since receiving the true gradient is better than the noisy

estimate (3.7). Similarly, Figure 3.6(b) shows the percent increase in cumulative planning

time for the same pairs (sampling vs. full online mirror descent), where percent increase is

given by 100(TimeM − TimeS)/TimeS . As the agent learns who the opponent is, it draws

many repeats in the Nw arms, whereas the full mirror descent update always performs d

computations. As a result, the percent increase in cumulative iteration time approaches a

contant of approximately 1.5×. All of these comparisons are done in simulation, where the

agent is not constrained to perform actions in under 100 milliseconds. Performing a full

mirror descent update is impossible on the real car, as it requires too much time.

3.4.5 Out-of-distribution opponents

Now we measure performance against two agents—OOD1 and OOD2—that are not in the

distribution developed by our offline population synthesis approach (see Appendix B.6.2 for

details on each agent’s policy). We perform only simulated experiments, as we are unable

to perform further real-world experimentation at the time of writing due to the COVID-19

pandemic. For given robustness levels ρ/Nw ∈ {0.001, 1.0} and Nw = 8 for all experiments,

we perform 180 two-lap races against each of the two human-created racing agents. Again,

for fair comparison, half of the experiments have the opponent start on the outside and
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Table 3.3: The effect of adaptivity on win-rate vs. OOD1

Win-rate Win-rate
Agent Non-adaptive Adaptive p-value

ρ/Nw = 0.001 0.633±0.036 0.683±0.035 0.280
ρ/Nw = 1.0 0.483±0.037 0.717±0.034 5.721e-6

Table 3.4: The effect of adaptivity on win-rate vs. OOD2

Win-rate Win-rate
Agent Non-adaptive Adaptive p-value

ρ/Nw = 0.001 0.494±0.037 0.589±0.037 0.059
ρ/Nw = 1.0 0.572±0.037 0.739±0.033 0.001

half on the inside. Tables 3.3 and 3.4 show the results. Overall, the trends match those

of the in-distribution opponents. Namely, adaptivity significantly increases the win-rate

when robustness is high (ρ/Nw = 1.0), whereas for low robustness (ρ/Nw = 0.001) there

is no significant change. Interestingly, adaptivity with robustness not only recovers but

surpasses the win-rate of the non-adaptive non-robust policy. We hypothesize that, because

out-of-distribution opponents do not match any of the learned prototypes, maintaining an

uncertainty over belief automatically helps the agent plan against the “surprising” out-

of-distribution actions. Validation of this hypothesis by comparing performance against

more out-of-distribution opponents is an interesting direction for future work. Overall,

we observe that even against out-of-distribution opponents, we achieve the overall goal of

balancing performance and safety.

3.5 Discussion

The central hypothesis of this chapter is that distributionally robust evaluation of plans

relative to the agent’s belief state about opponents, which is updated as new observations

are made, can lead to policies achieving the same performance as non-robust approaches

without sacrificing safety. To evaluate this hypothesis we identify a natural division of the



62 CHAPTER 3. BALANCING SAFETY & PERFORMANCE

underlying problem. First, we parameterize the set of possible opponents via population-

based synthesis without requiring expert demonstrations. Second, we propose an online

opponent-modeling framework which enables the application of distributionally robust op-

timization (DRO) techniques under computational constraints. We provide strong empir-

ical evidence that distributional robustness combined with adaptivity enables a principled

method automatically trading between safety and performance. Also, we demonstrate the

transfer of our methods from simulation to real autonomous racecars. The addition of re-

cursive feasibility arguments for stronger safety guarantees could improve the applicability

of these techniques to real-world settings. Furthermore, although autonomous racing is the

focus of our experiments in this chapter, future work should explore the generality of our

approach in other settings such as human-robot interaction.

In this chapter as well as the previous one, we have considered relatively narrow, domain-

specific definitions of safety: misclassification rates and episode lengths in Chapter 2 and

percentage of time with small iTTC during a race in this chapter. In the next chapter, we

generalize these notions of understanding and measuring safety. In particular, Chapter 4

presents a unified framework with which to measure safety that is well-suited for safety-

critical algorithms—that is, measuring the probability of failure.
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Chapter 4

The risk-based framework

The most important questions of life. . . are indeed, for the

most part, only problems of probability.

— Pierre-Simon Laplace, Théorie Analytique des

Probabilités

In this chapter, we present a framework with which to evaluate safety-critical machine

learning systems. In such settings, failure is extremely costly, so the average-case test

performance benchmark that is ubiquitous in current machine-learning practice is insuffi-

cient. Furthermore, because such systems interact with humans, model failure can result

as a consequence of other stochastic agents, so defining notions of “correctness” is difficult.

As such, formal verifications which rely on such binary specifications of correctness of an

algorithm are inappropriate. Even if such a specification could be devised, model com-

plexity often prevents viability of formal verification or other traditional software-testing

techniques (similar to the NP-hardness results of Chapter 2). Because failures are costly

yet always possible, we take the perspective of risk. Namely, we prioritize learning the most

likely failure modes and characterizing a system’s safety by its probability of failure. This

approach, which we call the risk-based framework, is generally applicable to safety-critical

machine-learning systems, but for concreteness, we frame this chapter within the context of

autonomous driving. Chapter 5 broadens the scope to include other application domains.

While recent developments in autonomous vehicle (AV) technology highlight substan-

tial progress, we lack tools for rigorous and scalable testing. Real-world testing, the de

facto evaluation environment, places the public in danger, and, due to the rare nature of

accidents, will require billions of miles in order to statistically validate performance claims.

65



66 CHAPTER 4. THE RISK-BASED FRAMEWORK

We implement a simulation framework that can test an entire modern autonomous driving

system, including, in particular, systems that employ deep-learning perception and control

algorithms. Using adaptive importance-sampling methods to accelerate rare-event prob-

ability evaluation, we estimate the probability of an accident under a base distribution

governing standard traffic behavior. We demonstrate our framework on a highway scenario,

accelerating system evaluation by 2-20 times over naive Monte Carlo sampling methods and

10-300P times (where P is the number of processors) over real-world testing.

4.1 Introduction

Recent breakthroughs in deep learning have accelerated the development of autonomous ve-

hicles (AVs); many research prototypes now operate on real roads alongside human drivers.

While advances in computer-vision techniques have made human-level performance possible

on narrow perception tasks such as object recognition, several fatal accidents involving AVs

underscore the importance of testing whether the perception and control pipeline—when

considered as a whole system—can safely interact with humans. Unfortunately, testing AVs

in real environments, the most straightforward validation framework for system-level input-

output behavior, requires prohibitive amounts of time due to the rare nature of serious

accidents [260]. Concretely, a recent study [149] argues that AVs need to drive “hundreds

of millions of miles and, under some scenarios, hundreds of billions of miles to create enough

data to clearly demonstrate their safety.” Alteratively, formally verifying an AV algorithm’s

“correctness” [171, 7, 256, 217] is difficult since all driving policies are subject to crashes

caused by other drivers [260]. It is unreasonable to ask that the policy be safe under all

scenarios. Unfortunately, ruling out scenarios where the AV should not be blamed is a

task subject to logical inconsistency, combinatorial growth in specification complexity, and

subjective assignment of fault.

Motivated by the challenges underlying real-world testing and formal verification, we

consider a probabilistic paradigm—which we call a risk-based framework—where the goal

is to evaluate the probability of an accident under a base distribution representing standard

traffic behavior. By assigning learned probability values to environmental states and agent

behaviors, our risk-based framework considers performance of the AV’s policy under a

data-driven model of the world. To efficiently evaluate the probability of an accident,

we implement a photo-realistic and physics-based simulator that provides the AV with
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perceptual inputs (e.g. video and range data) and traffic conditions (e.g. other cars and

pedestrians). The simulator allows parallelized, faster-than-real-time evaluations in varying

environments (e.g. weather, geographic locations, and aggressiveness of other cars).

Formally, we let P0 denote the base distribution that models standard traffic behavior

and X ∼ P0 be a realization of the simulation (e.g. weather conditions and driving policies

of other agents). For an objective function f : X → R that measures “safety”—so that low

values of f(x) correspond to dangerous scenarios—our goal is to evaluate the probability of

a dangerous event

pγ := P0(f(X) ≤ γ) (4.1)

for some threshold γ. Our risk-based framework is agnostic to the complexity of the ego-

policy and views it as a black-box module. Such an approach allows, in particular, deep-

learning based perception systems that make formal verification methods intractable.

An essential component of this approach is to estimate the base distribution P0 from

data; we use public traffic data collected by the US Department of Transportation [286].

While such datasets do not offer insights into how AVs interact with human agents—this is

precisely why we design our simulator—they illustrate the range of standard human driving

behavior that the base distribution P0 must model. We use imitation learning [250, 242, 243,

131, 21] to learn a generative model for the behavior (policy) of environment vehicles; unlike

traditional imitation learning, we train an ensemble of models to characterize a distribution

of human-like driving policies.

As serious accidents are rare (pγ is small), we view this as a rare-event simulation [13]

problem; naive Monte Carlo sampling methods require prohibitively many simulation roll-

outs to generate dangerous scenarios and estimate pγ . To accelerate safety evaluation, we

use adaptive importance-sampling methods to learn alternative distributions Pθ that gen-

erate accidents more frequently. Specifically, we use the cross-entropy algorithm [247] to

iteratively approximate the optimal importance sampling distribution. In contrast to sim-

ple classical settings [247, 308] which allow analytic updates to Pθ, our high-dimensional

search space requires solving convex optimization problems in each iteration (Section 4.2).

To address numerical instabilities of importance sampling estimators in high dimensions,

we carefully design search spaces and perform computations in logarithmic scale. Our

implementation produces 2-20 times as many rare events as naive Monte Carlo methods,

independent of the complexity of the ego-policy.

In addition to accelerating evaluation of pγ , learning a distribution Pθ that frequently
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Figure 4.1: Multi-lane highway driving on I-80: (left) real image, (right) rendered image from
simulator

generates realistic dangerous scenarios Xi ∼ Pθ is useful for engineering purposes. The

importance-sampling distribution Pθ not only efficiently samples dangerous scenarios, but

also ranks them according to their likelihoods under the base distribution P0. This capa-

bility enables a deeper understanding of failure modes and prioritizes their importance to

improving the ego-policy.

As a system, our simulator allows fully distributed rollouts, making our approach orders

of magnitude cheaper, faster, and safer than real-world testing. Using the asynchronous

messaging library ZeroMQ [130], our implementation is fully-distributed among available

CPUs and GPUs; our rollouts are up to 30P times faster than real time, where P is the

number of processors. Combined with the cross-entropy method’s speedup, we achieve

10-300P speedup over real-world testing.

In what follows, we describe components of our open-source toolchain, a photo-realistic

simulator equipped with our data-driven risk-based framework and cross-entropy search

techniques. The toolchain can test an AV as a whole system, simulating the driving policy

of the ego-vehicle by viewing it as a black-box model. The use of adaptive-importance

sampling methods motivates a unique simulator architecture (Section 4.3) which allows real-

time updates of the policies of environment vehicles. In Section 4.4, we test our toolchain

by considering an end-to-end deep-learning-based ego-policy [43] in a multi-agent highway

scenario. Figure 4.1 shows one configuration of this scenario in the real world along with

rendered images from the simulator, which uses Unreal Engine 4 [103]. Our experiments

show that we accelerate the assessment of rare-event probabilities with respect to naive

Monte Carlo methods as well as real-world testing. We believe our open-source framework
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is a step towards a rigorous yet scalable platform for evaluating AV systems, with the

broader goal of understanding how to reliably deploy deep-learning systems in safety-critical

applications.

4.2 Rare-event simulation

To motivate our risk-based framework, we first argue that formally verifying correctness of

a AV system is infeasible due to the challenge of defining “correctness.” Consider a scenario

where an AV commits a traffic violation to avoid collision with an out-of-control truck

approaching from behind. If the ego-vehicle decides to avoid collision by running through

a red light with no further ramifications, is it “correct” to do so? The “correctness” of the

policy depends on the extent to which the traffic violation endangers nearby humans and

whether any element of the “correctness” specification explicitly forbids such actions. That

is, “correctness” as a binary output is a concept defined by its exceptions, many elements

of which are subject to individual valuations [45].

Instead of trying to verify correctness, we begin with a continuous measure of safety

f : X → R, where X is space of traffic conditions and behaviors of other vehicles. The

prototypical example in this chapter is the minimum time-to-collision (TTC) (see Appendix

C.1 for its definition) to other environmental agents over a simulation rollout. Rather

than requiring safety for all x ∈ X , we relax the deterministic verification problem into

a probabilistic one where we are concerned with the probability under standard traffic

conditions that f(X) goes below a safety threshold. Given a distribution P0 on X , our goal

is to estimate the rare event probability pγ := P0(f(X) ≤ γ) based on simulated rollouts

f(X1), . . . , f(Xn). Note that the safety function f need not make judgements regarding

correctness, fault, or blame (although it is flexible enough such that constructive notions

of blame like the RSS approach of Shalev-Shwartz et al. [260] can be components of f).

Rather, the burden of proof for the importance of various modes of failure is placed on their

probability of occurrence. Furthermore, although we consider only a scalar function f in

this work, the framework can be generalized to include multi-objective criteria, in which

case the the rare-event probability becomes one of searching for a Pareto frontier below

some threshold γ.

As accidents are rare and pγ is near 0, we treat this as a rare-event simulation problem;
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see [56, 13, Chapter VI] for an overview of this topic. First, we briefly illustrate the well-

known difficulty of naive Monte Carlo simulation when pγ is small. From a sample Xi
i.i.d.∼

P0, the naive Monte Carlo estimate is p̂N,γ := 1
N

∑N
i=1 1 {f(Xi) ≤ γ}. As pγ is small, we

use relative accuracy to measure our performance, and the central limit theorem implies

the relative accuracy is approximately

∣∣∣∣ p̂N,γpγ − 1

∣∣∣∣ dist
≈

√
1− pγ
Npγ

|Z|+ o(1/
√
N) for Z ∼ N(0, 1).

For small pγ , we require a sample of size N & 1/(pγε
2) to achieve ε-relative accuracy, and

if f(X) is light-tailed, the sample size must grow exponentially in γ.

Cross-entropy method As an alternative to a naive Monte Carlo estimator, we consider

(adaptive) importance sampling [13], and we use a model-based optimization procedure to

find a good importance-sampling distribution. The optimal importance-sampling distribu-

tion for estimating pγ has the conditional density p?(x) = 1 {f(x) ≤ γ} p0(x)/pγ , where p0

is the density function of P0: as p0(x)/p?(x) = pγ for all x satisfying 1 {f(x) ≤ γ}, the

estimate p̂?N,γ := 1
N

∑N
i=1

p0(Xi)
p?(Xi)

1 {f(Xi) ≤ γ} is exact. This sampling scheme is, unfortu-

nately, de facto impossible, because we do not know pγ . Instead, we use a parameterized

importance sampler Pθ and employ an iterative model-based search method to modify θ so

that Pθ approximates P ?.

The cross-entropy method [247] iteratively tries to find θ? ∈ argminθ∈ΘDkl (P ?||Pθ),
the Kullback-Leibler projection of P ? onto the class of parameterized distributions P =

{Pθ}θ∈Θ. Over iterations k, we maintain a surrogate distribution qk(x) ∝ 1 {f(x) ≤ γk} p0(x)

where γk ≥ γ is a (potentially random) proxy for the rare-event threshold γ, and we use

samples from Pθ to update θ as an approximate projection of Q onto P. The motivation

underlying this approach is to update θ so that Pθ upweights regions of X with low objective

value (i.e. unsafe) f(x). We fix a quantile level ρ ∈ (0, 1)—usually we choose ρ ∈ [0.01, 0.2]—

and use the ρ-quantile of f(X) where X ∼ Pθk as γk, our proxy for the rare event threshold

γ (see [133] for alternatives). We have the additional challenge that the ρ-quantile of f(X)

is unknown, so we approximate it using i.i.d. samples Xi ∼ Pθk . Compared to applications

of the cross-entropy method [247, 308] that focus on low-dimensional problems permitting

analytic updates to θ, our high-dimensional search space requires solving convex optimiza-

tion problems in each iteration. To address numerical challenges in computing likelihood
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Algorithm 4.1 Cross-Entropy Method

1: Input: Quantile ρ ∈ (0, 1), Stepsizes {αk}k∈N, Sample sizes {Nk}k∈N, Number of itera-
tions K

2: Initialize: θ0 ∈ Θ
3: for k = 0, 1, 2, . . . ,K − 1 do

4: Sample Xk,1, . . . , Xk,Nk
i.i.d.∼ Pθk

5: Set γk as the minimum of γ and the ρ-quantile of f(Xk,1), . . . , f(Xk,Nk)
6: θk+1 = argmaxθ∈Θ

{
αkθ

>Dk+1 + (1− αk)θ>∇A(θk)−A(θ)
}

ratios in high-dimensions, our implementation carefully constrains the search space and we

compute likelihoods in logarithmic scale.

We now rigorously describe the algorithmic details. First, we use natural exponential

families as our class of importance samplers P.

Definition 1. The family of density functions {pθ}θ∈Θ, defined with respect to base measure

µ, is a natural exponential family if there exists a sufficient statistic Γ such that pθ(x) =

exp(θ>Γ(x)−A(θ)) where A(θ) = log
∫
X exp(θ>Γ(x))dµ(x) is the log partition function and

Θ := {θ | A(θ) <∞}.

Given this family, we consider idealized updates to the parameter vector θk at iteration k,

where we compute projections of a mixture of Qk and Pθk onto P

θk+1 = argmin
θ∈Θ

Dkl (αkQk + (1− αk)Pθk ||Pθ)

= argmax
θ∈Θ

{αkEQk [log pθ(X)] + (1− αk)Eθk [log pθ(X)]}

= argmax
θ∈Θ

{
αkθ

>EQk [Γ(X)] + (1− αk)θ>∇A(θk)−A(θ)
}
. (4.2)

The term EQk [Γ(X)] is unknown in practice, so we use a sampled estimate. ForXk,1, . . . , Xk,Nk
i.i.d.∼

Pθk , let γk be the ρ-quantile of f(Xk,1), . . . , f(Xk,Nk) and define

Dk+1 :=
1

Nk

Nk∑
i=1

qk(Xk,i)

pθk(Xk,i)
Γ(Xk,i) =

1

Nk

Nk∑
i=1

p0(Xk,i)

pθk(Xk,i)
1 {f(Xk,i) ≤ γk}Γ(Xk,i). (4.3)

Using the estimate Dk+1 in place of EQk [Γ(X)] in the idealized update (4.2), we obtain

Algorithm 4.1. To select the final importance sampling distribution from Algorithm 4.1, we

choose θk with the lowest ρ-quantile of f(Xk,i). We observe that this choice consistently
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improves performance over taking the last iterate or Polyak averaging. Letting θce de-

note the parameters for the importance sampling distribution learned by the cross-entropy

method, we sample Xi
i.i.d.∼ Pθce and use p̂N,γ := 1

N

∑N
i=1

p0(Xi)
pθce (Xi)

1 {f(Xi) ≤ γ} as our final

importance-sampling estimator for pγ .

In the context of our rare-event simulator, we use a combination of Beta and Normal

distributions for Pθ. The sufficient statistics Γ include (i) the parameters of the generative

model of behaviors that our imitation-learning schemes produce and (ii) the initial poses

and velocities of other vehicles, pedestrians, and obstacles in the simulation. Given a current

parameter θ and realization from the model distribution Pθ, our simulator then (i) sets the

parameters of the generative model for vehicle policies and draws policies from this model,

and (ii) chooses random poses and velocities for the simulation. Our simulator is one of the

largest-scale applications of cross-entropy methods.

4.3 Simulation framework

Two key considerations in our risk-based framework influence design choices for our sim-

ulation toolchain: (1) learning the base distribution P0 of nominal traffic behavior via

data-driven modeling, and (2) testing the AV as a whole system. We now describe how our

toolchain achieves these goals.

4.3.1 Data-driven generative modeling

While our risk-based framework (cf. Section 4.2) is a concise, unambiguous measure of sys-

tem safety, the rare-event probability pγ is only meaningful insofar as the base distribution

P0 of road conditions and the behaviors of other (human) drivers is estimable. Thus, to

implement our risk-based framework, we first learn a base distribution P0 of nominal traffic

behavior. Using the highway traffic dataset NGSim [286], we train policies of human drivers

via imitation learning [250, 242, 243, 131, 21]. Our data consists of videos of highway traffic

[286], and our goal is to create models that imitate human driving behavior even in scenarios

distinct from those in the data. We employ an ensemble of generative adversarial imitation

learning (GAIL) [131] models to learn P0. Our approach is motivated by the observation

that reducing an imitation-learning problem to supervised learning—where we simply use

expert data to predict actions given vehicle states—suffers from poor performance in regions

of the state space not encountered in data [242, 243]. Reinforcement-learning techniques
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have been observed to improve generalization performance, as the imitation agent is able

to explore regions of the state space in simulation during training that do not necessarily

occur in the expert data traces.

Generically, GAIL is a minimax game between two functions: a discriminator Dφ and

a generator Gξ (with parameters φ and ξ respectively). The discriminator takes in a state-

action pair (s, u) and outputs the probability that the pair came from real data, P(real data).

The generator takes in a state s and outputs a conditional distribution Gξ(s) := P(u | s)
of the action u to take given state s. In our context, Gξ(·) is then the (learned) policy

of a human driver given environmental inputs s. Training the generator weights ξ occurs

in a reinforcement-learning paradigm with reward − log(1 − Dφ(s,Gξ(s))). We use the

model-based variant of GAIL (MGAIL) [21] which renders this reward fully differentiable

with respect to ξ over a simulation rollout, allowing efficient model training. GAIL has

been validated by Kuefler et al. [166] to realistically mimic human-like driving behavior

from the NGSim dataset across multiple metrics. These include the similarity of low-level

actions (speeds, accelerations, turn-rates, jerks, and time-to-collision), as well as higher-

level behaviors (lane change rate, collision rate, hard-brake rate, etc). See Appendix C.3 for

a reference to an example video of the learned model driving in a scenario alongside data

traces from human drivers.

Our importance sampling and cross-entropy methods use not just a single instance

of model parameters ξ, but rather a distribution over them to form a generative model

of human driving behavior. To model this distribution, we use a (multivariate normal)

parametric bootstrap over a trained ensemble of generators ξi, i = 1, . . . ,m. Our models

ξi are high-dimensional (ξ ∈ Rd, d > m) as they characterize the weights of large neural

networks, so we employ the graphical lasso [99] to fit the inverse covariance matrix for our

ensemble. This approach to modeling uncertainty in neural-network weights is similar to

the bootstrap approach of Osband et al. [221]. Other approaches include using dropout for

inference [101] and variational methods [117, 42, 157].

While several open source driving simulators have been proposed [81, 258, 232], our

problem formulation requires unique features to allow sampling from a continuous distri-

bution of driving policies for environmental agents. Conditional on each sample of model

parameters ξ, the simulator constructs a (random) rollout of vehicle behaviors according to

Gξ. Our simulator is designed to efficiently execute and update these policies as new sam-

ples ξ are drawn for each rollout. At the time this research was conducted, other simulators
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did not have this functionality. Since then, the CARLA simulator [81] has significantly

increased its functionality.

4.3.2 System architecture

The second key characteristic of our framework is that it enables black-box testing the AV

as a whole system. Flaws in complex systems routinely occur at poorly specified interfaces

between components, as interactions between processes can induce unexpected behavior.

Consequently, solely testing subcomponents of an AV control pipeline separately is insuf-

ficient [2]. Moreover, it is increasingly common for manufacturers to utilize software and

hardware artifacts for which they do not have any whitebox model [126, 62]. We provide

a concise but extensible language-agnostic interface to our benchmark world model so that

common AV sensors such as cameras and lidar can provide the necessary inputs to induce

vehicle actuation commands.

Our simulator is a distributed, modular framework, which is necessary to support the

inclusion of new AV systems and updates to the environment-vehicle policies. A benefit

of this design is that simulation rollouts are simple to parallelize. In particular, we allow

instantiation of multiple simulations simultaneously, without requiring that each include

the entire set of components. For example, a desktop may support only one instance of

Unreal Engine but could be capable of simulating 10 physics simulations in parallel; it

would be impossible to fully utilize the compute resource with a monolithic executable

wrapping all engines together. Our architecture enables instances of the components to

be distributed on heterogeneous GPU compute clusters while maintaining the ability to

perform meaningful analysis locally on commodity desktops. In Appendix C.1, we detail

our scenario specification, which describes how Algorithm 4.1 maps onto our distributed

architecture.

4.4 Experiments

In this section, we demonstrate our risk-based framework on a multi-agent highway sce-

nario. As the rare-event probability of interest pγ gets smaller, the cross-entropy method

learns to sample more rare events compared to naive Monte Carlo sampling; we empirically

observe that the cross-entropy method produces 2-20 times as many rare events as its naive

counterpart. Our findings hold across different ego-vehicle policies, base distributions P0,



4.4. EXPERIMENTS 75

and scenarios.

To highlight the modularity of our simulator, we evaluate the rare-event probability pγ

on two different ego-vehicle policies. The first is an instantiation of an imitation learning

(non-vision) policy which uses lidar as its primary perceptual input. Secondly, we investigate

a vision-based controller (vision policy), where the ego-vehicle drives with an end-to-end

highway autopilot network [43], taking as input a rendered image from the simulator (and

lidar observations) and outputting actuation commands. See Appendix C.2 for a summary

of network architectures used.

We consider a scenario consisting of six agents, five of which are considered part of

the environment. The environment vehicles’ policies follow the distribution learned in Sec-

tion 4.3.1. All vehicles are constrained to start within a set of possible initial configurations

consisting of pose and velocity, and each vehicle has a goal of reaching the end of the approx-

imately 2 km stretch of road. Fig. 4.1 shows one such configuration of the scenario, along

with rendered images from the simulator. We create scene geometry based on surveyors’

records and photogrammetric reconstructions of satellite imagery of the portion of I-80 in

Emeryville, California where the traffic data was collected [286].

Simulation parameters We detail our postulated base distribution P0. Letting m de-

note the number of vehicles, we consider the random tuple X = (S, T,W, V, ξ) as our

simulation parameter where the pair (S, T ) ∈ Rm×2
+ indicates the two-dimensional position-

ing of each vehicle in their respective lanes (in meters), W the orientation of each vehicle

(in degrees), and V the initial velocity of each vehicle (in meters per second). We use

ξ ∈ R404 to denote the weights of the last layer of the neural network trained to imitate

human-like driving behavior. Specifically, we set S ∼ 40Beta(2, 2) + 80 with respect to

the starting point of the road, T ∼ 0.5Beta(2, 2) − 0.25 with respect to the lane’s center,

W ∼ 7.2Beta(2, 2) − 3.6 with respect to facing forward, and V ∼ 10Beta(2, 2) + 10. We

assume ξ ∼ N (µ0,Σ0), with the mean and covariance matrices learned via the ensemble

approach outlined in Section 4.3.1. The neural network whose last layer is parameterized

by ξ describes the policy of environment vehicles; it takes as input the state of the vehicle

and lidar observations of the surrounding environment (see Appendix C.2 for more details).

Throughout this section, we define our measure of safety f : X → R as the minimum time-

to-collision (TTC) over the simulation rollout. We calculate TTC from the center of mass

of the ego vehicle; if the ego-vehicle’s body crashes into obstacles, we end the simulation
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before the TTC can further decrease (see Appendix C.1 for details).

Cross-entropy method Throughout our experiments, we impose constraints on the

space of importance samplers (adversarial distributions) for feasibility. Numerical stabil-

ity considerations predominantly drive our hyperparameter choices. For model parame-

ters ξ, we also constrain the search space to ensure that generative models Gξ maintain

reasonably realistic human-like policies (recall Sec. 4.3.1). For S, T,W , and V , we let

{Beta(α, β) : α, β ∈ [1.5, 7]} be the model space over which the cross-entropy method

searches, scaled and centered appropriately to match the scale of the respective base dis-

tributions. We restrict the search space of distributions over ξ ∈ R404 by searching over

{N(µ,Σ0) : ‖µ− µ0‖∞ ≤ .01}, where (µ0,Σ0) are the parameters of the base (bootstrap)

distribution. For our importance sampling distribution Pθ, we use products of the above

marginal distributions. These restrictions on the search space mitigate numerical instabili-

ties in computing likelihood ratios within our optimization routines, which is important for

our high-dimensional problems.

We first illustrate the dependence of the cross-entropy method on its hyperparameters.

We choose to use a non-vision ego-vehicle policy as a test bed for hyperparameter tuning,

since this allows us to take advantage of the fastest simulation speeds for our experiments.

We focus on the effects (in Algorithm 4.1) of varying the most influential hyperparame-

ter, ρ ∈ (0, 1], which is the quantile level determining the rarity of the observations used

to compute the importance sampler θk. Intuitively, as ρ approaches 0, the cross-entropy

method learns importance samplers Pθ that up-weight unsafe regions of X with lower f(x),

increasing the frequency of sampling rare events (events with f(X) ≤ γ). In order to avoid

overfitting θk as ρ→ 0, we need to increase Nk as ρ decreases. Our choice of Nk is borne out

of computational constraints as it is the biggest factor that determines the run-time of the

cross-entropy method. Consistent with prior works [247, 135], we observe empirically that

ρ ∈ [0.01, 0.2] is a good range for the values of Nk deemed feasible for our computational

budget (Nk = 1000 ∼ 5000). We fix the number of iterations at K = 100, number of samples

taken per iteration at Nk = 5000, step size for updates at αk = 0.8, and γ = 0.14. As we see

below, we consistently observe that the cross-entropy method learns to sample significantly

more rare events, despite the high-dimensional nature (d ≈ 500) of the problem.

To evaluate the learned parameters, we draw n = 105 samples from the importance

sampling distribution to form an estimate of pγ . In Figure 4.2, we vary ρ and report the



4.4. EXPERIMENTS 77

0.14 0.16 0.18 0.2 0.22 0.24 0.26
2

3

4

5

6

7

8

9

(a) Ratio of number of rare events vs. threshold

0.14 0.16 0.18 0.2 0.22 0.24 0.26

10
-1

10
0

10
1

(b) Ratio of variance vs. threshold

Figure 4.2: The ratio of (a) number of rare events and (b) estimation variance for pγ between
cross-entropy method and naive MC sampling for the non-vision ego policy. Rarity is inversely
proportional to γ, and, as expected, we see the best performance for our method over naive MC at
small γ.

Search Algorithm γtest = 0.14 γtest = 0.15 γtest = 0.19 γtest = 0.20

Naive 1300K (12.4±3.1)e-6 (80.6±7.91)e-6 (133±3.2)e-5 (186±3.79)e-5
Cross-entropy 100K (19.8±8.88)e-6 (66.1 ± 15)e-6 (108± 9.51)e-5 (164 ± 14)e-5

Naive 100K (20±14.1)e-6 (100± 31.6)e-6 (132±11.5)e-5 (185±13.6)e-5

Table 4.1: Estimate of rare-event probability pγ (non-vision ego policy) with standard errors. For
the cross-entropy method, we show results for the learned importance sampling distribution with
ρ = 0.01.

relative performance of the cross-entropy method compared to naive Monte Carlo sam-

pling. Even though we set γ = 0.14 in Algorithm 4.1, we evaluate the performance of all

models with respect to multiple threshold levels γtest. We note that as ρ approaches 0, the

cross-entropy method learns to frequently sample increasingly rare events; the cross-entropy

method yields 3-10 times as many dangerous scenarios, and achieves 2-16 times variance

reduction depending on the threshold level γtest. In Table 4.1, we contrast the estimates

provided by naive Monte Carlo and the importance sampling estimator provided by the

cross-entropy method with ρ = 0.01; to form a baseline estimate, we run naive Monte

Carlo with 1.3 ·106 samples. For a given number of samples, the cross-entropy method with

ρ = 0.01 provides more precise estimates for the rare-event probability pγ ≈ 10−5 over naive

Monte Carlo.
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Figure 4.3: The ratio of (a) number of rare events and (b) estimation variance for pγ between
cross-entropy method and naive MC sampling for the vision-based ego policy.

Search Algorithm γtest = 0.22 γtest = 0.23 γtest = 0.24 γtest = 0.25

Cross-entropy 50K (5.87±1.82)e-5 (13.0± 2.94)e-5 (19.0 ± 3.14)e-5 (4.52 ± 1.35)e-4
Naive 50K (11.3±4.60)e-5 (20.6±6.22)e-5 (43.2±9.00)e-5 (6.75±1.13)e-4

Table 4.2: Estimate of rare-event probability pγ (vision-based ego policy) with standard errors. For
the cross-entropy method, we show results for the learned importance sampling distribution with
ρ = 0.01.

We now leverage the tuned hyperparameter (ρ = 0.01) for our main experiment: eval-

uating the probability of a dangerous event for the vision-based ego policy. We find that

the hyperparameters for the cross-entropy method generalize, allowing us to produce good

importance samplers for a very different policy without further tuning. Based on our com-

putational budget (with our current implementation, vision-based simulations run about

15 times slower than simulations with only non-vision policies), we choose K = 20 and

Nk = 1000 for the cross-entropy method to learn a good importance sampling distribution

for the vision-based policy (although we also observe similar behavior for Nk as small as

100). In Figure 4.3, we illustrate again that the cross-entropy method learns to sample

dangerous scenarios more frequently (Figure 4.3(a))—up to 18 times that of naive Monte

Carlo—and produces importance sampling estimators with lower variance (Figure 4.3(b)).

As a result, our estimator in Table 4.2 is better calibrated compared to that computed from

naive Monte Carlo.
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Qualitative analysis We provide a qualitative interpretation for the learned parameters

of the importance sampler. For initial velocities, angles, and positioning of vehicles, the

importance sampler shifts environmental vehicles to box in the ego-vehicle and increases

the speeds of trailing vehicles by 20%, making accidents more frequent. We also observe

that the learned distribution for initial conditions have variance 50% smaller than that of

the base distribution, implying concentration around adversarial conditions. Perturbing

the policy weights ξ for GAIL increases the frequency of risky high-level behaviors (lane-

change rate, hard-brake rate, etc.). An interesting consequence of using our definition of

TTC from the center of the ego vehicle (cf. Appendix C.1) as a measure of safety is that

dangerous events f(X) ≤ γtest (for small γtest) include frequent sideswiping behavior, as

such accidents result in smaller TTC values than front- or rear-end collisions. See Appendix

C.3 for a reference to supplementary videos that exhibit the range of behavior across many

levels γtest. The modularity of our simulation framework easily allows us to modify the safety

objective to an alternative definition of TTC or even include more sophisticated notions of

safety, e.g. temporal-logic specifications or implementations of responsibility-sensitive safety

(RSS) [260, 241].

4.5 Related work and discussion

Given the complexity of AV software and hardware components, it is unlikely that any single

method will serve as an oracle for certification. Many existing tools are complementary to

our risk-based framework. In this section, we compare and contrast representative results

in testing, verification, and simulation.

AV testing generally consists of three paradigms. The first, largely attributable to reg-

ulatory efforts, uses a finite set of basic competencies (e.g. the Euro NCAP Test Protocol

[255]); while this methodology is successful in designing safety features such as airbags and

seat-belts, the non-adaptive nature of static testing is less effective in complex software sys-

tems found in AVs. Alternatively, real-world testing—deployment of vehicles with human

oversight—exposes the vehicle to a wider variety of unpredictable test conditions. However,

as we outlined above, these methods pose a danger to the public and require prohibitive

number of driving hours due to the rare nature of accidents [149]. Simulation-based falsi-

fication (in our context, simply finding any crash) has also been successfully utilized [284];

this approach does not maintain a link to the likelihood of the occurrence of a particular
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event, which we believe to be key in acting to prioritize and correct AV behavior.

Formal verification methods [171, 7, 256, 217] have emerged as a candidate to reduce

the intractability of empirical validation. A verification procedure considers whether the

system can ever violate a specification and returns either a proof that there is no such

execution or a counterexample. Verification procedures require a white-box description of

the system (although it may be abstract), as well as a mathematically precise specification.

Due to the impossibility of certifying safety in all scenarios, these approaches [260] require

further specifications that assign blame in the case of a crash. Such assignment of blame

is impossible to completely characterize and relies on subjective notions of fault. Our risk-

based framework allows one to circumvent this difficulty by only using a measure of safety

that does not assign blame (e.g. TTC) and replacing the specifications that assign blame

with a probabilistic notion of how likely the accident is. While this approach requires a

learned model of the world P0—a highly nontrivial statistical task in itself—the adaptive

importance sampling techniques we employ can still efficiently identify dangerous scenarios

even when P0 is not completely accurate. Conceptually, we view verification and our frame-

work as complementary; they form powerful tools that can evaluate safety before deploying

a fleet for real-world testing.

Even given a consistent and complete notion of blame, verification remains highly in-

tractable from a computational standpoint. Efficient algorithms only exist for restricted

classes of systems in the domain of AVs, and they are fundamentally difficult to scale.

Specifically, AVs—unlike previous successful applications of verification methods to applica-

tion domains such as microprocessors [18]—include both continuous and discrete dynamics.

This class of dynamics falls within the purview of hybrid systems [187], for which exhaustive

verification is largely undecidable [127].

Verifying individual components of the perception pipeline, even as standalone systems,

is a nascent, active area of research (see [11, 70, 23] and many others). Current subsystem

verification techniques for deep neural networks [139, 152, 281] do not scale to state-of-

the-art models and largely investigate the robustness of the network with respect to small

perturbations of a single sample. There are two key assumptions in these works; the label

of the input is unchanged within the radius of allowable perturbations, and the resulting

expansion of the test set covers a meaningful portion of possible inputs to the network. Un-

fortunately, for realistic cases in AVs it is likely that perturbations to the state of the world

which in turn generates an image should change the label. Furthermore, the combinatorial
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nature of scenario configurations casts serious doubt on any claims of coverage.

In our risk-based framework, we replace the complex system specifications required for

formal verification methods with a model P0 that we learn via imitation-learning techniques.

Generative adversarial imitation learning (GAIL) was first introduced by Ho and Ermon

[131] as a way to directly learn policies from data and has since been applied to model human

driving behavior by Kuefler et al. [166]. Model-based GAIL (MGAIL) is the specific variant

of GAIL that we employ; introduced by Baram et al. [21], MGAIL’s generative model is

fully differentiable, allowing efficient model training with standard stochastic approximation

methods.

The cross-entropy method was introduced by Rubinstein [246] and has attracted interest

in many rare-event simulation scenarios [247, 165]. More broadly, it can be thought of as a

model-based optimization method [135, 136, 137, 307, 138, 310]. With respect to assessing

safety of AVs, the cross-entropy method has recently been applied in simple lane-changing

and car-following scenarios in low dimensions [308]. Our work significantly extends this ap-

proach by implementing a photo-realistic simulator that can assess the deep-learning based

perception pipeline along with the control framework. However, the cross-entropy method

becomes brittle in high dimensions due to computations involving products of likelihood

ratios, and it does not have guarantees for convergence to a good importance-sampling dis-

tribution. Chapter 5 considers the development of a novel rare-event simulation method

that scales better with dimension and has rigorous convergence guarantees.

To summarize, a fundamental tradeoff emerges when comparing the requirements of

our risk-based framework to other testing paradigms, such as real-world testing or for-

mal verification. Real-world testing endangers the public but is still in some sense a gold

standard. Verified subsystems provide evidence that the AV should drive safely even if

the estimated distribution shifts, but verification techniques are limited by computational

intractability as well as the need for both white-box models and the completeness of spec-

ifications that assign blame (e.g. [260]). In turn, our risk-based framework is most useful

when the base distribution P0 is accurate, but even when P0 is misspecified, our adaptive

importance sampling techniques can still efficiently identify dangerous scenarios, especially

those that may be missed by verification methods assigning blame. Our framework offers

significant speedups over real-world testing and allows efficient evaluation of black-box AV

input/output behavior, providing a powerful tool to aid in the design of safe AVs.
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Chapter 5

Neural bridge sampling for

rare-event simulation

Chaos isn’t a pit. Chaos is a ladder.

— Petyr Baelish, Game of Thrones

In the previous chapter, we introduced the risk-based framework, a formalism for testing

safety-critical machine-learning systems. We also employed a basic technique—the cross-

entropy method—to solve the rare-event simulation problem, the technical challenge un-

derpinning the risk-based framework. In this chapter, we move beyond this basic technique

and develop a novel rare-event simulation method that combines exploration, exploitation,

and optimization techniques to find failure modes and estimate their rate of occurrence. We

provide rigorous guarantees for the performance of our method in terms of both statistical

and computational efficiency. Finally, we demonstrate the efficacy of our approach on a

variety of scenarios, illustrating its usefulness as a tool for rapid sensitivity analysis and

model comparison that are essential to developing and testing safety-critical autonomous

systems.

5.1 Introduction

Data-driven and learning-based approaches have the potential to enable robots and au-

tonomous systems that intelligently interact with unstructured environments. Unfortu-

nately, evaluating the performance of the closed-loop system is challenging, limiting the

83
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success of such methods in safety-critical settings. Even if we produce a deep reinforce-

ment learning agent better than a human at driving, flying a plane, or performing surgery,

we have no tractable way to certify the system’s quality. Thus, currently deployed safety-

critical autonomous systems are limited to structured environments that allow mechanisms

such as PID control, simple verifiable protocols, or convex optimization to enable guaran-

tees for properties like stability, consensus, or recursive feasibility (see e.g. [84, 206, 46]).

The stylized settings of these problems and the limited expressivity of guaranteeable prop-

erties are barriers to solving unstructured, real-world tasks such as autonomous navigation,

locomotion, and manipulation.

The goal of this chapter is to efficiently evaluate complex systems that lack safety

guarantees and/or operate in unstructured environments. We assume access to a simulator

to test the system’s performance. Given a distribution X ∼ P0 of simulation parameters

that describe typical environments for the system under test, our governing problem is to

estimate the probability of an adverse event

pγ := P0(f(X) ≤ γ). (5.1)

The parameter γ is a threshold defining an adverse event, and f : X → R measures the safety

of a realization x of the agent and environment (higher values are safer). In this chapter, we

assume P0 is known; the generative-modeling and system-identification literatures (e.g. [14,

115, 224]) provide several approaches to learn or specify P0. A major challenge for solving

problem (5.1) is that the better an agent is at performing a task (i.e. the smaller pγ is),

the harder it is to confidently estimate pγ—one rarely observes events with f(x) ≤ γ. For

example, when P0 is light-tailed, the sample complexity of estimating pγ using naive Monte

Carlo samples grows exponentially [56].

Problem (5.1) is often solved in practice by naive Monte Carlo estimation methods, the

simplest of which explore the search space via random samples from P0. These methods are

unbiased and easy to parallelize, but they exhibit poor sample complexity. Naive Monte

Carlo methods can be improved by adding an adaptive component exploiting the most infor-

mative portions of random samples drawn from a sequence of approximating distributions

P0, P1, . . . , PK . However, standard adaptive Monte Carlo methods (e.g. [60]), though they

may use first-order information on the distributions Pk themselves, fail to use first-order in-

formation about f to improve sampling; we explicitly leverage this to accelerate convergence
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of the estimate through optimization.

Naive applications of first-order optimization methods in the estimation problem (5.1)—

for example biasing a sample in the direction −∇f(x) to decrease f(x)—also require second-

order information to correct for the distortion of measure that such transformations induce.

Consider the change of variables formula for distributions ρ(y) = ρ(g−1(y)) · | det Jg−1(y)|
where y = g(x). When g(x) is a function of the gradient ∇f(x), the volume distortion

| det Jg−1(y)| is a function of the Hessian ∇2f(x). Hessian computation, if even defined, is

unacceptably expensive for high-dimensional spaces X and/or simulations that involve the

time-evolution of a dynamical system; our approach avoids any Hessian computation. In

contrast, gradients ∇f(x) can be efficiently computed for many closed-loop systems [1, 222,

306, 177] or through the use of surrogate methods [301, 75, 21, 88].

To that end, we propose neural bridge sampling, a technique that combines exploration,

exploitation, and optimization to efficiently solve the estimation problem (5.1). Specifically,

we consider a novel Markov chain Monte Carlo (MCMC) scheme that moves along an adap-

tive ladder of intermediate distributions Pk (with corresponding unnormalized densities

ρk(x) and normalizing constants Zk :=
∫
X ρk(x)dx). This MCMC scheme iteratively trans-

forms the base distribution P0 to the distribution of interest P0I{f(x) ≤ γ}. Neural bridge

sampling adaptively balances exploration in the search space (via∇ log ρ0) against optimiza-

tion (via ∇f), while avoiding Hessian computations. Our final estimate p̂γ is a function of

the ratios Zk/Zk−1 of the intermediate distributions Pk, the so-called “bridges” [30, 198].

We accurately estimate these ratios by warping the space between the distributions Pk using

neural density estimation.

Contributions and outline Section 5.2 presents our method, while Section 5.3 provides

guarantees for its statistical performance and overall efficiency. A major focus of this work

is empirical, and accordingly, Section 5.4 empirically demonstrates the superiority of neural

bridge sampling over competing techniques in a variety of applications: (i) we evaluate the

sensitivity of a formally-verified system to domain shift, (ii) we consider design optimization

for high-precision rockets, and (iii) we perform model comparisons for two learning-based

approaches to autonomous navigation.



86 CHAPTER 5. NEURAL BRIDGE SAMPLING

5.1.1 Related Work

Safety evaluation Several communities [71] have attempted to evaluate the closed-

loop performance of cyber-physical, robotic, and embodied agents both with and with-

out learning-based components. Existing solutions are predicated on the definition of the

evaluation problem: verification, falsification, or estimation. In this chapter we consider

a method that utilizes interactions with a gradient oracle in order to solve the estimation

problem (5.1). In contrast to our approach, the verification community has developed tools

(e.g. [163, 65, 6]) to investigate whether any adverse or unsafe executions of the system ex-

ist. Such methods can certify that failures are impossible, but they require that the model

is written in a formal language (a barrier for realistic systems) and they require whitebox

access to this formal model. Falsification approaches (e.g. [94, 80, 9, 312, 85, 231]) attempt

to find any failure cases for the system (but not the overall probability of failure). Similar to

our approach, some falsification approaches (e.g. [1, 306]) utilize gradient information, but

their goal is to simply minimize f(x) rather than solve problem (5.1). Adversarial machine

learning is closely related to falsification; the key difference is the domain over which the

search for falsifying evidence is conducted. Adversarial examples (e.g. [152, 188, 265, 281])

are typically restricted to an p-norm ball around a point from a dataset, whereas falsification

considers all possible in-distribution examples. Both verification and falsification methods

provide less information about the system under test than estimation-based methods: they

return only whether or not the system satisfies a specification. When the system operates

in an unstructured environment (e.g. driving in an urban setting), the mere existence of

failures is trivial to demonstrate [260]. Several authors (e.g. [218, 298]) have proposed that

it is more important in such settings to understand the overall frequency of failures as well

as the relative likelihoods of different failure modes, motivating our approach.

Sampling techniques and density estimation When sampling rare events and esti-

mating their probability, there are two main branches of related work: parametric adaptive

importance sampling (AIS) [193, 216] and nonparametric sequential Monte Carlo (SMC)

techniques [82, 77]. Both of these literatures are advanced forms of variance reduction tech-

niques, and they are complementary to standard methods such as control variates [248, 129].

Parametric AIS techniques, such as the cross-entropy method [247], postulate a family of

distributions for the optimal importance-sampling distribution, and they iteratively per-

form heuristic optimization problems to update the sampling distribution. SMC techniques
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perform sampling from a sequence of probability distributions defined nonparametrically

by the samples themselves. The SMC formalism encompasses particle filters, birth-death

processes, and smoothing filters [76]. Our technique blends aspects of both of these commu-

nities: we include parametric warping distributions in the form of normalizing flows [224]

within the SMC setting.

Our method employs bridge sampling [30, 198], which is closely related to other SMC

techniques such as umbrella sampling [63], multilevel splitting [50, 60], and path sampling

[108]. The operational difference between these methods is in the form of the intermediate

distribution used to calculate the ratio of normalizing constants. Namely, the optimal

umbrella sampling distribution is more brittle than that of bridge sampling [63]. Multilevel

splitting employs hard barriers through indicator functions, whereas our approach relaxes

these hard barriers with smoother exponential barriers. Path sampling generalizes bridge

sampling by taking discrete bridges to a continuous limit; this approach is difficult to

implement in an adaptive fashion.

The accuracy of bridge sampling depends on the overlap between intermediate distribu-

tions Pk. Simply increasing the number of intermediate distributions is inefficient, because

it requires running more simulations. Instead, we employ a technique known as warping,

where we map intermediate distributions to a common reference distribution [293, 197].

Specifically, we use normalizing flows [237, 158, 223, 224], which efficiently transform ar-

bitrary distributions to standard Gaussians through a series of deterministic, invertible

functions. Normalizing flows are typically used for probabilistic modeling, variational in-

ference, and representation learning. Recently, Hoffman et al. [132] explored the benefits

of using normalizing flows for reparametrizing distributions within MCMC; our warping

technique encompasses this benefit and extends it to the SMC setting.

Beyond simulation This chapter assumes that the generative model of the operating

domain P0 is given, so all failures are in the modeled domain by definition. When deploying

systems in the real world, anomaly detection [61] to discover distribution shifts is comple-

mentary to our approach (see e.g. Choi et al. [68], Nachman and Shih [204]). Another way

to frame that problem is via distributional robustness [93, 207, 234], where we analyze the

worst-case probability of failure under an uncertainty set composed of perturbations to P0.
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5.2 Proposed approach

As we note in Section 5.1, naive Monte Carlo measures probabilities of rare events in-

efficiently. Instead, we consider a sequential Monte Carlo approach: we decompose the

rare-event probability pγ into a chain of intermediate quantities, each of which is tractable

to compute with standard Monte Carlo methods. Specifically, consider K distributions

Pk with corresponding (unnormalized) probability densities ρk and normalizing constants

Zk :=
∫
X ρk(x)dx. Let ρ0 correspond to the density for P0 and ρ∞(x) := ρ0(x)I{f(x) ≤ γ}

be the (unnormalized) conditional density for the region of interest. Then, we consider the

following decomposition:

pγ := P0(f(X) ≤ γ) = EPK

[
ZK
Z0

ρ∞(X)

ρK(X)

]
,

ZK
Z0

=
K∏
k=1

Zk
Zk−1

. (5.2)

Although we are free to choose the intermediate distributions arbitrarily, we will show below

that our estimate for each ratio Zk/Zk−1 and thus pγ is accurate insofar as the distributions

sufficiently overlap (a concept we make rigorous in Section 5.3). Thus, the intermediate

distributions act as bridges that iteratively steer samples from P0 towards PK . One special

case is the multilevel splitting approach [148, 50, 298, 215], where ρk(x) := ρ0(x)I{f(x) ≤
Lk} for levels ∞ =: L0 > L1 . . . > LK := γ. In this work, we introduce an exponential

tilting barrier [262]

ρk(x) := ρ0(x) exp
(
βk [γ − f(x)]−

)
, (5.3)

which allows us to take advantage of gradients ∇f(x). Here we use the “negative ReLU”

function defined as [x]− := −[−x]+ = xI{x < 0}. We set β0 := 0 and adaptively choose

βk > βk−1. The parameter βk tilts the distribution towards the distribution of interest:

ρk → ρ∞ as βk → ∞. In what follows, we describe an MCMC method that combines

exploration, exploitation, and optimization to draw samples Xk
i ∼ Pk. We then show how

to compute the ratios Zk/Zk−1 given samples from both Pk−1 and Pk. Finally, we describe

an adaptive way to choose the intermediate distributions Pk. Algorithm 5.1 summarizes

the overall approach.

MCMC with an exponential barrier Gradient-based MCMC techniques such as the

Metropolis-adjusted Langevin algorithm (MALA) [244, 239] or Hamiltonian Monte Carlo

(HMC) [86, 211] use gradients ∇ log ρ0(x) to efficiently explore the space X and avoid
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Algorithm 5.1 Neural bridge sampling

Input: N samples x0i
i.i.d.∼ P0, MCMC steps T , step size α ∈ (0, 1), stop condition s ∈ (0, 1)

Initialize k ← 0, β0 ← 0, log(p̂γ)← 0
while 1

N

∑
i I{f(xki ) ≤ γ} < s do

βk+1 ← solve problem (5.8)
for i = 1 to N , in parallel

xk+1
i

i.i.d.∼ Mult({ρk+1(xki )/ρk(xki )}) // multinomial resampling
for t = 1 to T

for i = 1 to N , in parallel
xk+1
i ← WarpedHMC(xki , θk) // Appendix D.1

θk+1 ← argmin problem (5.6) // train normalizing flow on {xk+1
i } via SGD

log(p̂γ)← log(p̂γ) + log(Zk+1/Zk) // warped bridge estimate (5.5)
k ← k + 1

log(p̂γ)← log(p̂γ) + log( 1
N

∑
i I{f(xki ) ≤ γ})

inefficient random-walk behavior [90, 67]. Classical mechanics inspires the HMC approach:

HMC introduces an auxiliary random momentum variable v ∈ V and generates proposals

by performing Hamiltonian dynamics in the augmented state-space X ×V. These dynamics

conserve volume in the augmented state-space, even when performed with discrete time

steps [176].

By including the barrier exp
(
βk [γ − f(x)]−

)
, we combine exploration with optimization;

the magnitude of βk in the barrier modulates the importance of ∇f (optimization) over

∇ log ρ0 (exploration), two elements of the HMC proposal (see Appendix D.1 for details).

We discuss the adaptive choice for βk below. Most importantly, we avoid any need for

Hessian computation because the dynamics conserve volume. As Algorithm 5.1 shows,

we perform MCMC as follows: given N samples xk−1
i ∼ Pk−1 and a threshold βk, we

first resample using their importance weights (exploiting the performance of samples that

have lower function value than others) and then perform T HMC steps. In this work,

we implement split HMC [259] which is convenient for dealing with the decomposition of

log ρk(x) into log ρ0(x) + βk[γ − f(x)]− (see Appendix D.1 for details).

Estimating Zk/Zk−1 via bridge sampling Bridge sampling [30, 198] allows estimating

the ratio of normalizing constants of two distributions by rewriting

Ek :=
Zk
Zk−1

=
ZBk /Zk−1
ZBk /Zk

=
EPk−1

[ρBk (X)/ρk−1(X)]

EPk [ρBk (X)/ρk(X)]
, Êk =

∑N
i=1 ρ

B
k (xk−1i )/ρk−1(xk−1i )∑N
i=1 ρ

B
k (xki )/ρk(xki )

, (5.4)

where ρBk is the density for a bridge distribution between Pk−1 and Pk, and ZBk is its asso-

ciated normalizing constant. We employ the geometric bridge ρBk (x) :=
√
ρk−1(x)ρk(x).
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In addition to being simple to compute, bridge sampling with a geometric bridge en-

joys the asymptotic performance guarantee that the relative mean-square error scales in-

versely with the Bhattacharyya coefficient, G(Pk−1, Pk) =
∫
X

√
ρk−1(x)
Zk−1

ρk(x)
Zk

dx ∈ [0, 1] (see

Appendix D.2.1 for a proof). This value is closely related to the Hellinger distance,

H(Pk−1, Pk) =
√

2− 2G(Pk−1, Pk). In Section 5.3, we analyze the ramifications of this

fact on the overall convergence of our method.

Neural warping Both HMC and bridge sampling benefit from warping samples xi into a

different space. As Betancourt [35] notes, HMC mixes poorly in spaces with ill-conditioned

geometries. Girolami and Calderhead [112] and Hoffman et al. [132] explore techniques to

improve mixing efficiency by minimizing shear in the corresponding Hamiltonian dynamics.

One way to do so is to transform to a space that resembles a standard isotropic Gaussian

[191].

Conveniently, transforming Pk to a common distribution (e.g. a Gaussian) also benefits

the bridge-sampling estimator (5.4). As noted above, the error of the bridge estimator

is inversely proportional to the Hellinger distance between the distributions H(Pk−1, Pk).

However, normalizing constants Zk are invariant to (invertible) transformations. Thus,

transformations that warp the space between distributions reduce the error of the bridge-

sampling estimator (5.4). Concretely, we consider invertible transformations Wk such that

yki = Wk(x
k
i ). For clarity of notation, we write probability densities over the space Y as φ,

the corresponding distributions for Y k as Qk, and the the inverse transformations W−1
k (y)

as Vk(y). Then we can write the bridge-sampling estimate (5.4) in terms of the transformed

variables y. The numerator and denominator are as follows:

EQk−1

[
φBk (Y )

φk−1(Y )

]
= EQk−1

[√
φk(Y )

φk−1(Y )

]
= EQk−1

[√
ρk(Vk(Y ))|det JVk(Y )|

ρk−1(Vk−1(Y ))|det JVk−1
(Y )|

]
, (5.5a)

EQk
[
φBk (Y )

φk(Y )

]
= EQk

[√
φk−1(Y )

φk(Y )

]
= EQk

[√
ρk−1(Vk−1(Y ))|det JVk−1

(Y )|
ρk(Vk(Y ))|det JVk(Y )|

]
. (5.5b)

By transforming all Pk into Qk to resemble standard Gaussians, we reduce the Hellinger dis-

tance H(Qk−1, Qk) ≤ H(Pk−1, Pk). Note that the volume distortions in the expression (5.5)

are functions of the transformation Vk, so they do not require computation of the Hessian

∇2f . However, computing ρk(Vk(y)) requires evaluations of f (e.g. calls of the simulator).

We consider the cost-benefit analysis of warping in Section 5.3.

Classical warping techniques include simple mean shifts or affine scaling [293, 197].
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Similar to Hoffman et al. [132], we consider normalizing flows, a much more expressive

class of transformations that have efficient Jacobian computations [224]. Specifically, given

samples xki , we train masked autoregressive flows (MAFs) [223] to minimize the empirical KL

divergence between the transformed samples yki and a standard Gaussian DKL(Qk‖N (0, I)).

Parametrizing Wk by θk, this minimization problem is equivalent to:

minimizeθ

N∑
i=1

− log
∣∣∣det JWk

(
xki ; θ

)∣∣∣+
1

2

∥∥∥Wk

(
xki ; θ

)∥∥∥2

2
. (5.6)

The KL divergence is an upper bound to the Hellinger distance; we found minimizing the

former to be more stable than minimizing the latter. Furthermore, to improve training

efficiency, we exploit the iterated nature of the problem and warm-start the weights θk with

the trained values θk−1 when solving problem (5.6) via stochastic gradient descent (SGD).

As a side benefit, the trained flows can be repurposed as importance-samplers for the ladder

of distributions from nominal behavior to failure.

Adaptive intermediate distributions Because we assume no prior knowledge of the

system under test, we exploit previous progress to choose the intermediate βk online; this

is a key difference to our approach compared to other forms of sequential Monte Carlo

(e.g. [209, 210]) which require a predetermined schedule for βk. We define the quantities

ak :=
∑N

i I{f(xki ) ≤ γ}/N, bk(β) :=
∑N

i=1 exp
(
(β − βk)[γ − f(xki )]−

)
/N. (5.7)

The first is the fraction of samples that have achieved the threshold. The second is an

importance-sampling estimate of Ek+1 given samples xki ∼ Pk, written as a function of β.

For fixed fractions α, s ∈ (0, 1) with α < s, βk+1 solves the following optimization problem:

maximize β s.t. {bk(β) ≥ α, ak/bk(β) ≤ s}. (5.8)

Since bk(β) is monotonically decreasing and bk(β) ≥ ak, this problem can be solved effi-

ciently via binary search. The constant α tunes how quickly we enter the tails of P0 (smaller

α means fewer iterations), whereas s is a stop condition for the last iteration. Choosing

βk+1 via (5.8) yields a crude estimate for the ratio Zk+1/Zk as α (or aK−1/s for the last

iteration). The bridge-sampling estimate Êk+1 corrects this crude estimate once we have

samples from the next distribution Pk+1.



92 CHAPTER 5. NEURAL BRIDGE SAMPLING

5.3 Performance analysis

We can write the empirical estimator of the function (5.2) as

p̂γ =
K∏
k=1

Êk
1

N

N∑
i=1

ρ∞(xKi )

ρK(xKi )
, (5.9)

where Êk is given by the expression (5.4) without warping, or similarly, as a Monte Carlo

estimate of the expression (5.5) with warping. We provide guarantees for both the time

complexity of running Algorithm 5.1 (i.e. the iterations K) as well as the overall mean-

square error of p̂γ . For simplicity, we provide results for the asymptotic (large N) and

well-mixed MCMC (large T ) limits. Assuming these conditions, we have the following:

Proposition 5.1. Let K0 := blog(pγ)/ log(α)c. Then, for large N and T , s ≥ 1/3, and

pγ < s, the total number of iterations in Algorithm 5.1 approaches K
a.s.→ K0 + I{pγ/αK0 <

s}. Furthermore, for the non-warped estimator, the asymptotic relative mean-square er-

ror E[(p̂γ/pγ − 1)2] is

2

N

K∑
k=1

(
1

G(Pk−1, Pk)2
− 1

)
− 2

N

K−1∑
k=1

(
G(Pk−1, Pk+1)

G(Pk−1, Pk)G(Pk, Pk+1)
− 1

)
+

1− s
sN

+ o

(
1

N

)
. (5.10)

In particular, if the inverse Bhattacharyya coefficients are bounded such that 1
G(Pk−1,Pk)2

≤

D (with D ≥ 1), then the asymptotic relative mean-square error satisfies E
[(

p̂γ
pγ
− 1
)2
]
≤

2KD/N . For the warped estimator, replace G(Pi, Pj) with G(Qi, Qj) in the expression (5.10).

See Appendix D.2.1 for the proof. We provide some remarks about the above result.

Intuitively, the first term in the bound (5.10) accounts for the variance of Êk. The denom-

inator of Êk−1 and numerator of Êk both depend on xki ; the second sum in (5.10) accounts

for the covariance between those terms. Furthermore, the quantities in the bound (5.10)

are all empirically estimable. In particular,

G(Pk−1, Pk)
2 =

ZBk
Zk−1

ZBk
Zk

,
G(Pk−1, Pk+1)

G(Pk−1, Pk)G(Pk, Pk+1)
=
ZCk
Zk

Zk
ZBk

Zk
ZBk+1

, (5.11)

where ZCk /Zk = EPk
[
ρBk (X)ρBk+1(X)/ρk(X)2

]
. The last term in the bound (5.10) is the

relative variance of the final Monte Carlo estimate
∑

i I{f(xKi ) ≤ γ}/N .
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Overall efficiency The statistical efficiency outlined in Proposition 5.1 is pointless if

it is accompanied by an overwhelming computational cost. We take the atomic unit of

computation to be a query of the simulator, which returns both evaluations of f(x) and

∇f(x); we assume other computations to be negligible compared to simulation. As such,

the cost of Algorithm 5.1 is N(1 + KT ) evaluations of the simulator without warping and

N(1+KT )+2KN with warping. Thus, the relative burden of warping is minimal, because

training the normalizing flows to minimize DKL(Qk‖N (0, I)) requires no extra simulations.

In contrast, directly minimizing DKL(Qk−1‖Qk) would require extra simulations at each

training step to evaluate ρk(Vk(y)).

Our method can exploit two further sources of efficiency. First, we can employ surrogate

models for gradient computation and/or function evaluation during the T MCMC steps.

For example, using a surrogate model for a fraction d ≤ 1 − 1/T of the MCMC iterations

reduces the factor T to Ts := (1− d)T in the overall cost. Surrogate models have an added

benefit of making our approach amenable for simulators that do not provide gradients. The

second source of efficiency is parallel computation. Given C processors, the factor N in the

cost drops to Nc := dN/Ce.

The overall efficiency of the estimator (5.9)–relative error multiplied by cost [119]–

depends on pγ as log(pγ)2. In contrast, the standard Monte Carlo estimator has cost

N to produce an estimate with relative error
1−pγ
pγN

. Thus, the relative efficiency gain for

our estimator (5.9) over naive Monte Carlo is O(1/(pγ log(pγ)2)): the efficiency gains over

naive Monte Carlo increase as pγ decreases.

5.4 Experiments

We evaluate our approach on a variety of scenarios showcasing its use in efficiently evaluating

the safety of autonomous systems. We begin with a synthetic problem to illustrate the

methodology concretely as well as highlight the pitfalls of using gradients naively. Then, we

evaluate a formally-verified neural network controller [141] on the OpenAI Gym continuous

MountainCar environment [201, 51] under a domain perturbation. Finally, we consider two

examples of using neural bridge sampling as a tool for engineering design in high-dimensional

settings: (a) comparing thruster sizes to safely land a rocket [38] in the presence of wind,

and (b) comparing two algorithms on the OpenAI Gym CarRacing environment (which

requires a surrogate model for gradients) [160].
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We compare our method with naive Monte Carlo (MC) and perform ablation studies

for the effects of neural warping (denoted as NB with warping and B without). We also

provide comparisons with adaptive multilevel splitting (AMS) [50, 298, 215]. All methods

are given the same computational budget as measured by evaluations of the simulator. This

varies from 50,000-100,000 queries to run Algorithm 5.1 as determined by pγ (see Appendix

D.3 for details of each experiment’s hyperparameters). However, despite running Algorithm

5.1 with a given γ, we evaluate estimates p̂γtest for all γtest ≥ γ. Larger γtest require fewer

queries to evaluate p̂γtest (as Algorithm 5.1 terminates early). Thus, we adjust the number of

MC queries accordingly for each γtest. Independently, we calculate the ground-truth values

pγtest for non-synthetic problems using a fixed, very large number of MC queries.

Synthetic problem We consider the two-dimensional function f(x) = −min(|x[1]|, x[2]),

where x[i] is the ith dimension of x ∈ R2. We let γ=−3 and P0 =N (0, I) (for which pγ =

3.6 · 10−6). Note that ∇2f(x) = 0 almost everywhere, yet ∇f(x) has negative divergence

in the neighborhoods of x[2] = |x[1]|. Indeed, gradient descent collapses xi ∼ P0 to the

lines x[2] = |x[1]|, and the ill-defined nature of the Hessian makes it unsuitable to track

volume distortions. Thus, simple gradient-based transformations used to find adversarial

examples (e.g. minimize f(x)) should not be used for estimation in the presence of non-

smooth functions, unless volume distortions can be quantified.

Figure 5.1(a) shows the region of interest in pink and illustrates the gradual warping of

ρ0 towards ρ∞ over iterations of Algorithm 5.1. Figures 5.1(b) and 5.1(c) indicate that all

adaptive methods outperform MC for pγtest < 10−3. For larger pγtest , the overhead of the

adaptive methods renders MC more efficient (Figure 5.1(c)). The linear trend of the yellow

MC/NB line in Figure 5.1(c) aligns with the theoretical efficiency gain discussed in Section

5.3. Finally, due to the simplicity of the search space and the landscape of f(x), the benefits

of gradients and warping are not drastic. Specifically, as shown in Figure 5.1(c), all adaptive

methods have similar confidence in their estimates except at very small pγtest < 10−5, where

NB outperforms AMS and B. The next example showcases the benefits of gradients as well

as neural warping in a more complicated search space.

Sensitivity of a formally-verified controller under domain perturbation We

consider a minimal reinforcement learning task, the MountainCar problem [201] (Figure

5.2(a)). Ivanov et al. [141] created a formally-verified neural network controller to achieve
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(a) Samples colored by iteration (b) p̂γtest vs. γtest
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(c) Ratio of variance vs. pγtest

Figure 5.1: Experiments on a synthetic problem. 10 trials are used to calculate the 99% confidence
intervals in (b) and variance ratios in (c). All adaptive methods perform similarly in this well-
conditioned search space except at very small γ, where NB performs the best.

reward > 90 over all initial positions ∈ [−0.59,−0.4] and 0 initial velocity (see Appendix

D.3). The guarantees of formal verification hold only with respect to the specified domain;

even small domain perturbations can affect system performance [142]. We illustrate this

sensitivity by adding a small perturbation to the initial velocity ∼ N (0, 10−4) and seek

pγ := P0(reward ≤ 90) for P0 = Unif(−0.59,−0.4)×N (0, 10−4). We measure the ground-

truth failure rate as pγ = 1.6 · 10−5 using 50 million naive Monte Carlo samples.

Figure 5.2(b) shows contours of f(x). Notably, the failure region (dark blue) is an

extremely irregular geometry with pathological curvature, which renders MCMC difficult

for AMS and B [35]. Quantitatively, poor mixing adversely affects the performance of AMS
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(a) The environment
(b) Contours of f(x)
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(c) Ratio of variance vs. pγtest

Figure 5.2: Experiments on the MountainCar environment. The dashed horizontal line in (b) is the
line along which the controller is formally verified. 10 trials are used for the variance ratios in (c).
The irregular geometry degrades performance of AMS and B, but B benefits slightly from gradients
over AMS. NB uses gradients and neural warping to outperform all other techniques.

and B, and they perform even worse than MC (Figure 5.2(c)). Whereas gradients help B

slightly over AMS, gradients and neural warping together help NB outperform all other

methods. We next move to higher-dimensional systems.

Rocket design We now consider the problem of autonomous, high-precision vertical land-

ing of an orbital-class rocket (Figure 5.3(a)), a technology first demonstrated by SpaceX in

2015. Rigorous system-evaluation techniques such as our risk-based framework are powerful

tools for quickly exploring design tradeoffs. In this experiment, the amount of thrust which
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(a) Rocket landing scenario (b) Failure rates for 2 rocket designs
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(c) Failure modes

Figure 5.3: Rocket design experiments. NB’s high-confidence estimates enable quick design iterations
to either increase the landing pad radius or consider a third rocket that fails with probability < 10−5.
Low-dimensional visualization shows that Rocket2’s failure types are more concentrated than those
of Rocket1, even though Rocket2 has a higher overall probability of failure.

the rocket is capable of deploying to land safely must be balanced against the payload it is

able to carry to space; stronger thrust increases safety but decreases payloads. We consider

two rocket designs and we evaluate their respective probabilities of failure (not landing

safely on the landing pad) for landing pad sizes up to 15 meters in radius. That is, −f(x)

is the distance from the landing pad’s center at touchdown and γ = −15. We evaluate

whether the rockets perform better than a threshold failure rate of 10−5.

We let P0 be the 100-dimensional search space parametrizing the sequence of wind-

gusts during the rocket’s flight. Appendix D.3 contains details for this parametrization
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and the closed-loop simulation of the rocket’s control law (based on industry-standard

approaches [38, 238]). Figure 5.3(b) shows the estimated performance of the two rockets.

We show only MC and NB for clarity; comparisons with other methods are in Table 5.1 (with

ground-truth values calculated using 50 million naive Monte Carlo simulations). Whereas

both NB and MC confidently estimate Rocket2’s failure rate as higher than 10−4, only NB

confidently estimates Rocket1’s failure rate as higher than 10−5, letting engineers quickly

judge whether to increase the size of the landing pad or build a better rocket.

We can also distinguish between the modes of failure for the rockets. Namely, Figure

5.3(c) shows a PCA projection of failures (with γtest = −15) onto 2 dimensions. Analysis of

the PCA modes indicates that failures are dominated by high altitude and medium altitude

gusts. Even though Rocket2 has a higher probability of failure, its failure mode is more

concentrated than Rocket1’s failures.

Car racing The CarRacing environment (Figure 5.4(a)) is a challenging reinforcement-

learning task with a continuous action space and pixel observations. Similar observation

spaces have been proposed for real autonomous vehicles (e.g. [19, 186, 295]). We compare

two recent approaches, AttentionAgentRacer [279] and WorldModelRacer [118] that have

similar average performance: they achieve average rewards of 903± 49 and 899± 46 respec-

tively (mean ± standard deviation over 2 million trials). Both systems utilize one or more

deep neural networks to plan in image-space, so neither has performance guarantees. We

evaluate the probability of getting small rewards (γ = 150).

The 24-dimensional search space P0 parametrizes the generation of the racing track

(details are in Appendix D.3). This environment does not easily provide gradients due to

presence of a rendering engine in the simulation loop. Instead, we fit a Gaussian process

surrogate model to compute∇f(x) (see Appendix D.3). As these experiments are extremely

expensive (taking up to 1 minute per simulation), we only use 2 million naive Monte Carlo

samples to compute the ground-truth failure rates. Figure 5.4(b) shows that, even though

the two models have very similar average performance, their catastrophic failure curves

are distinct. Furthermore, MC is unable to distinguish between the policies below rewards

of 160 due to its high uncertainty, whereas NB clearly shows that WorldModelRacer is

superior. Note that, because even the ground-truth has non-negligible uncertainty with 2

million samples, we only report the variance component of relative mean-square error in

Table 5.1.
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(a) The environment (b) Failure rates for racecars
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(c) Failure modes

Figure 5.4: CarRacing experiments. MC cannot distinguish between the policies below γtest =
160. NB’s high-confidence estimates enable model comparisons at extreme limits of failure. Low-
dimensional visualization of the failure modes shows that the algorithms fail in distinct ways.

As with the rocket design experiments, we visualize the modes of failure (defined by

γtest = 225) via PCA in Figure 5.4(c). The dominant eigenvectors involve large differentials

between radii and angles of consecutive checkpoints that are used to generate the racing

tracks. AttentionAgentRacer has two distinct modes of failure, whereas WorldModelRacer

has a single mode.
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Table 5.1: Relative mean-square error E[(p̂γ/pγ − 1)
2
] over 10 trials

Synthetic MountainCar Rocket1 Rocket2 AttentionAgentRacer WorldModelRacer

MC 1.1821 0.2410 1.1039 0.0865 1.0866 0.9508
AMS 0.0162 0.5424 0.0325 0.0151 1.0211 0.8177
B 0.0514 0.3856 0.0129 0.0323 0.9030 0.7837
NB 0.0051 0.0945 0.0102 0.0078 0.2285 0.1218

pγ 3.6 · 10−6 1.6 · 10−5 2.3 · 10−5 2.4 · 10−4 ≈ 2.5 · 10−5 ≈ 9.5 · 10−6

5.5 Discussion

There is a growing need for rigorous evaluation of safety-critical systems which contain

components without formal guarantees (e.g. deep neural networks). Scalably evaluating

the safety of such systems in the presence of rare, catastrophic events is a necessary compo-

nent in enabling the development of trustworthy high-performance systems. Our proposed

method, neural bridge sampling, employs three concepts—exploration, exploitation, and

optimization—in order to evaluate system safety with provable statistical and computational

efficiency. We demonstrate the performance of our method on a variety of reinforcement-

learning and robotic systems, highlighting its use as a tool for continuous integration and

rapid engineering design. In future work, we intend to investigate how efficiently sampling

rare failures—like we propose here for evaluation—could also enable the automated repair

of safety-critical reinforcement-learning agents.



Chapter 6

Conclusions and future directions

In order to make progress, one must leave the door to the

unknown ajar—ajar only.

— Richard Feynman, The Pleasure of Finding Things Out

This thesis presents methods to improve the development and testing of safety-critical

machine-learning systems. These two problems represent the bottlenecks to enabling ML

algorithms as high-stakes decision-making systems. As such, we place particular emphasis

on developing procedures that have both theoretical guarantees as well as practical imple-

mentations. Our overall approach has been to rigorously handle various forms of uncertainty

within mathematical frameworks that lead to tractable optimization or search procedures.

This chapter summarizes our findings and presents promising directions for further investi-

gation.

In the first part of the thesis, we consider building safety-critical ML systems that are

robust to modeled uncertainty sets. We consider small- and large-uncertainty regimes in

Chapters 2 and 3 respectively. For small uncertainty sets, we consider a penalty formula-

tion of a distributionally robust optimization procedure. When employed in the context of

smooth loss functions, this procedure is provably fast and results in models with certificates

of robustness. The beauty of this approach is its simplicity and wide applicability across

many models, as the smoothness assumption is relatively easy to satisfy for ML models in

many applications. Indeed, the upshot of this chapter is that smooth ML models may be

preferable to standard non-smooth models (e.g. models with ReLU activations) from both

101
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safety and computational standpoints. In addition to the empirical validation we have con-

ducted here, further experimentation should be performed over larger models and datasets

(e.g. the recent work of Xie et al. [303] seems promising in this respect). Furthermore,

our theoretical results will benefit from tighter statistical bounds for the generalization

performance of deep networks.

The methods of Chapter 2 are intractable for large uncertainty sets, so Chapter 3 con-

siders the large-uncertainty regime using a different methodology. Because uncertainty is

large, the focus of this chapter is to balance the tradeoff between safety and performance.

Our approach is to learn a parametrization for the large uncertainty set that enables a

tractable distributionally robust optimization procedure. In particular, we consider an ex-

treme form of this setting where we must use synthetic data for the first stage of learning

the uncertainty set, as we are unable to collect real data. We find that adaptivity is key

in balancing the tradeoff between performance and safety; our experiments provide strong

empirical evidence that being able to increase or decrease the size of the uncertainty set

online enables performance that is both safe and performant. However, the methods of this

chapter focused on the case-study of autonomous racing, and it is important to understand

how to apply the procedure—the offline parametrization of uncertainty via synthetic data

and the online robust adaptation algorithm—to other reinforcement-learning environments

as well as supervised-learning settings. In particular, for these other scenarios there may be

more rigorous ways to define the representation of the uncertainty set beyond the domain-

specific knowledge that we have used for autonomous racing. For all of these settings,

combining our procedure with more formal guarantees of safety (e.g. recursive feasibility

for reinforcement-learning or formal verification for supervised learning) will enhance its

ability to be used in real-world settings.

In the second part of the thesis, we formalize the testing of safety-critical ML sys-

tems through measuring the probability of failure, an approach we call the risk-based

framework. This framework converts the safety-testing problem into one of searching for

high-likelihood and a priori unknown failure modes. Specifically, the technical challenge

becomes a rare-event simulation problem. Chapter 4 develops the three components of

this framework—simulation, generative models, and a search algorithm—through the case-

study of autonomous driving. Overall, the risk-based framework is a tractable alternative

to traditional testing techniques; our approach is designed for efficient evaluation of mod-

ern safety-critical ML systems. Nevertheless, it is compatible with traditional techniques
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such as formal verification or falsification for subcomponents. For example, these methods

can be combined with our approach through the use of safety metrics that are built upon

continuous relaxations of metric temporal logic; this combines notions of likelihood with

those of fault or blame in the search process. Moreover, because our approach relies heavily

on simulation, risk calculations are useful insofar as generative models are accurate. Thus,

developing imitation-learning models that have guarantees regarding their ability to mimic

real-world data-generating distributions is a clear avenue for continued research.

Finally, Chapter 5 develops upon the third component of the risk-based framework: the

search algorithm used for rare-event simulation. Our technique, neural bridge sampling, is

provably efficient and has guarantees for estimation precision. Crucially, many modern ML

systems allow for gradients to be extracted from the simulator, so we develop the method

to take advantage of this information when it is available. Our overall approach combines

parametric and nonparametric approaches to sequential Monte Carlo schemes; learned para-

metric warping distributions allow us to improve estimation efficiency while nonparametric

Markov chain Monte Carlo techniques correct for bias in the parametric distributions. Ex-

periments showcase the benefits of this combination, as we outperform other techniques in

performing rapid model comparison and sensitivity analysis over a variety of scenarios. An

obvious avenue for further investigation is a more detailed convergence bound taking into

account finite-step and potentially non-mixed Markov chain Monte Carlo schemes. Further

experimentation with larger safety-critical systems is also important to evaluate the efficacy

of the approach over other techniques.

6.1 Unifying development and testing

Perhaps the most important vector for future research is combining the two parts of this

thesis into a unified framework for automating model governance. Imagine the following

continuous integration process. First, we use the methods of Chapters 2 and 3 to develop

a specific iteration of a safety-critical ML algorithm. Then, we test it using the methods of

Chapters 4 and 5 to efficiently find failure scenarios in simulation as well as their likelihood

of occurrence. To complete the feedback loop and continue the next iteration, we use

these failures to inform the development of uncertainty sets for robustification. However, in

traditional software development, this last piece of completing the loop is often an intensive

manual process. This is one of the reasons that, despite enormous teams and capital pouring
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into autonomous vehicle development over the past decade [154], fully self-driving cars are

still considered to be years if not decades away from deployment [49].

Automating this feedback requires redesigning software from the ground up such that it

is amenable to continuous updates (a paradigm shift that has been dubbed “Software 2.0”

[151]); the traditional process of refactoring and recompiling code requires too much costly

and inefficient human intervention. ML models are already well-designed to handle such

types of continuous feedback—this is obviously the essence of gradient descent methods.

However, automating overall model governance—the feedback between development and

testing—requires re-architecting entire software stacks to be suitable for automated feedback

rather than just individual ML subcomponents.

There are a variety of research questions that fall under this direction. How can we

design architectures such that the feedback process has guarantees of convergence? What

kinds of robustness certificates do we achieve using such a process? How do we optimally

inject exogenous data into this feedback loop as objectives or performance criteria change?

Furthermore, as we briefly discussed in Section 5.1.1, we can reverse this loop, using un-

certainty sets (potentially developed via synthetic data) to inform a family of distributions

over which to quantify risk. How can we efficiently compute this “robust risk”? How should

we optimally tradeoff between performing the feedback loop in forward and reverse direc-

tions? The lenses of robust risk and its counterpart “risk-informed robustness” are natural

extensions of this thesis. They represent exciting avenues for future research that can unify

the notions of development and testing into a single framework for governing safety-critical

ML.

6.2 Broader considerations

Having summarized the contributions of this thesis and outlined numerous frontiers for

future research, we pause to reflect on the larger ramifications of building foundational

theory and methods for developing and testing safety-critical ML systems. In particular,

we take a moment to extend beyond the focused technical discussion of the previous chapters

to broader ethical and societal considerations.

The underlying motivation for this thesis is that improving tools that ML practitioners

have to robustify their systems and perform risk-estimation has the potential to provide a

strong positive impact. Indeed, when safety-critical ML systems perform well, the result is
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that, far from endangering society, they can actually improve overall safety. For example,

in the case of autonomous vehicles, Sparrow and Howard [273] argue that it will be morally

wrong not to deploy self-driving technology once performance exceeds human capabilities,

and Kalra and Paddock [149] provide quantitative arguments corroborating this moral in-

centive. These arguments are readily transferrable to other applications of safety-critical

ML such as medical devices, stock-market infrastructure, home-automation devices, and

disability-assistance devices. Our work represents important tools for efficiently approach-

ing this performance threshold and rigorously determining when it is actually achieved.

However, while the widespread availability of autonomy-enabled devices could benefit

public health, there are many secondary risks associated with their development and de-

ployment. First, many learning-based components of these systems will require massive

and potentially invasive data collection [236]; preserving privacy of the public via federated

learning [195] and differential privacy-based mechanisms [91] should remain important ini-

tiatives within the ML community. A second potential negative consequence of applications

like autonomous vehicles is the use of the real-world as a “simulator” within a reinforcement-

learning scheme by releasing “beta” autonomy features (e.g. Tesla Autopilot [151]). Unlike

established industries such as aerospace [282], many potential safety-critical ML application

domains currently lack regulation and standards; it is important to ensure that industry

works with regulators to develop safety standards in a way that avoids regulatory capture.

If widely adopted into regulatory frameworks, tools for improving robustness and estimating

risk will enable rational decisions about the impact—positive or negative—of safety-critical

ML systems before real lives are affected.

In a larger sense, the successful deployment of safety-critical ML across many domains

could spark significant societal changes. For example, the autonomous applications de-

scribed previously could become core components of weapons systems and military technol-

ogy that are incompatible with (modern interpretations of) just war theory [272]. Similarly,

automation of the transportation industry has the potential to rapidly destroy the economics

of public infrastructure and cost millions of jobs [273]. Thus, Benkler [29] highlights that

there is a growing need for the academic community to take action on defining the broader

performance criteria to which we will hold artificial-intelligence applications. Specifically,

beyond making ML applications pass an appropriate bar of safety, how will we ensure that

they also abide by the ethical standards of our society? How can we build ML systems

that we trust? This desideratum is less focused than the lenses of safety—robustness and
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risk—that we have used to develop the technical advancements in this thesis. Rather, it

requires a comprehensive integration of mathematical frameworks with legal, philosophical,

and sociological schools of thought [54, 302]. This is, perhaps, a poignant message about

the enduring importance of human judgement as it pertains to artificial intelligence. In

order to entrust ML technology with our lives, technical advancements must inform and be

informed by broader societal context.
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Chapter 2 Appendices

A.1 Additional Experiments

A.1.1 MNIST attacks

We repeat Figure 2.3 using FGM (tow row of Figure A.1) and IFGM (bottom row of Figure

A.1) attacks. The same trends are evident as in Figure 2.3.

A.1.2 MNIST stability of loss surface

In Figure A.2, we repeat the illustration in Figure 2.4(b) for more digits. WRM’s “misclas-

sifications” are consistently reasonable to the human eye, as gradient-based perturbations

actually transform the original image to other labels. Other models do not exhibit this

behavior with the same consistency (if at all). Reasonable misclassifications correspond to

having learned a data representation that makes gradients interpretable.

A.1.3 MNIST Experiments with varied γ

In Figure A.3, we choose a fixed WRM adversary (fixed γadv) and perturb WRM models

trained with various penalty parameters γ. As the bound (2.11) with η = γ suggests,

even when the adversary has more budget than that used for training (1/γ < 1/γadv),

degradation in performance is still smooth. Further, as we decrease the penalty γ, the

amount of achieved robustness—measured here by test error on adversarial perturbations

with γadv—has diminishing gains; this is again consistent with our theory which says that

the inner problem (2.2b) is not efficiently computable for small γ.
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(a) Test error vs. εadv for ‖ · ‖2-FGM attack
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(b) Test error vs. εadv for ‖ · ‖∞-FGM attack
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(c) Test error vs. εadv for ‖ · ‖2-IFGM attack
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(d) Test error vs. εadv for ‖·‖∞-IFGM attack

Figure A.1: Further attacks on the MNIST dataset. We illustrate test misclassification error vs.
the adversarial perturbation level εadv. Top row: FGM attacks, bottom row: IFGM attacks. Left
column: Euclidean-norm attacks, right column: ∞-norm attacks. The vertical bar in (a) and (c)
indicates the perturbation level that was used for training the PGM, FGM, and IFGM models and
the estimated radius

√
ρ̂n(θWRM).



A.1. ADDITIONAL EXPERIMENTS 109

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.2: Visualizing stability over inputs. We illustrate the smallest WRM perturbation (largest
γadv) necessary to make a model misclassify a datapoint.
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(b) Test error vs. 1/γ

Figure A.3: (a) Stability and (b) test error for a fixed adversary. We train WRM models with
various levels of γ and perturb them with a fixed WRM adversary (γadv indicated by the vertical
bar).
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A.1.4 MNIST experiments with a larger adversarial budget

Figures A.4 and A.5 repeat Figures 2.2(b), 2.3, and A.1 for a larger training adversarial bud-

get (γ = 0.02C2) as well as larger test adversarial budgets. The distinctions in performance

between various methods are less apparent now. For our method, the inner supremum is

no longer strongly concave for over 10% of the data, indicating that we no longer have

guarantees of performance. For large adversaries (i.e. large desired robustness values) our

approach becomes a heuristic just like the other approaches.
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Figure A.4: Empirical comparison between certificate of robustness (2.11) (blue) and out-of-sample
(test) worst-case performance (red) for the experiments on MNIST with a larger training adversary.
The statistical error term εn(t) is omitted from the certificate. The vertical bar indicates the achieved
level of robustness on the training set ρ̂n(θWRM).
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(a) Test error vs. εadv for ‖ · ‖2-PGM attack
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(b) Test error vs. εadv for ‖ · ‖∞-PGM attack
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(c) Test error vs. εadv for ‖ · ‖2-FGM attack
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(d) Test error vs. εadv for ‖ · ‖∞-FGM attack
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(e) Test error vs. εadv for ‖ · ‖2-IFGM attack
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(f) Test error vs. εadv for ‖·‖∞-IFGM attack

Figure A.5: Attacks on the MNIST dataset with larger (training and test) adversarial budgets. We
illustrate test misclassification error vs. the adversarial perturbation level εadv. Top row: PGM
attacks, middle row: FGM attacks, bottom row: IFGM attacks. Left column: Euclidean-norm
attacks, right column: ∞-norm attacks. The vertical bar in (a), (c), and (e) indicates the perturba-
tion level that was used for training the PGM, FGM, and IFGM models and the estimated radius√
ρ̂n(θWRM).
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A.1.5 MNIST ∞-norm experiments

We consider training FGM, IFGM, and PGM with p = ∞. We first compare with WRM

trained in the same manner as before—with the squared Euclidean cost. Then, we consider

a heuristic Lagrangian approach for training WRM with the squared ∞-norm cost.

Comparison with standard WRM

Our method (WRM) is trained to defend against ‖·‖2-norm attacks by using the cost func-

tion

c((x, y), (x0, y0)) = ‖x− x0‖22 +∞ · 1 {y 6= y0}

with the convention that 0 · ∞ = 0. Standard adversarial training methods often train to

defend against ‖·‖∞-norm attacks, which we compare our method against in this subsection.

Direct comparison between these approaches is not immediate, as we need to determine a

suitable ε to train FGM, IFGM, and PGM in the ∞-norm that corresponds to the penalty

parameter γ for the ‖·‖2-norm that we use. Similar to the expression (2.23), we use

ε := E
P̂n

[‖T (θWRM, Z)− Z‖∞] (A.1)

as the adversarial training budget for FGM, IFGM and PGM with ‖·‖∞-norms. Because

2-norm adversaries tend to focus budgets on a subset of features, the resulting ∞-norm

perturbations are relatively large. In Figure A.6 we show the results trained with a small

training adversarial budget. In this regime, (large γ, small ε), WRM matches the perfor-

mance of other techniques.

In Figure A.7 we show the results trained with a large training adversarial budget.

In this regime (small γ, large ε), performance between WRM and other methods diverge.

WRM, which provably defends against small perturbations, outperforms other heuristics

against imperceptible attacks for both Euclidean and ∞ norms. Further, it outperforms

other heuristics on natural images, showing that it consistently achieves a smaller price of

robustness. On attacks with large adversarial budgets (large εadv), however, the performance

of WRM is worse than that of the other methods (especially in the case of∞-norm attacks).

These findings verify that WRM is a practical alternative over existing heuristics for the

moderate levels of robustness where our guarantees hold.
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Comparison with ‖·‖∞-WRM

Our computational guarantees given in Theorem 2.1 does not hold anymore when we con-

sider ∞-norm adversaries:

c((x, y), (x0, y0)) = ‖x− x0‖2∞ +∞ · 1 {y 6= y0} . (A.2)

Optimizing the Lagrangian formulation (2.2b) with the ∞-norm is difficult since subtract-

ing a multiple of the ∞-norm does not add (negative) curvature in all directions. In Ap-

pendix A.3, we propose a heuristic algorithm for solving the inner supremum problem (2.2b)

with the above cost function (A.2). Our approach is based on a variant of proximal algo-

rithms.

We compare our proximal heuristic introduced in Appendix A.3 with other adversarial

training procedures that were trained against ∞-norm adversaries. Results are shown in

Figure A.8 for a small training adversary and Figure A.9 for a large training adversary. We

observe that similar trends as in Section A.1.5 hold again.
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Figure A.6: Attacks on the MNIST dataset. We compare standard WRM with∞-norm PGM, FGM,
IFGM. We illustrate test misclassification error vs. the adversarial perturbation level εadv. Top row:
PGM attacks, middle row: FGM attacks, bottom row: IFGM attacks. Left column: Euclidean-norm
attacks, right column: ∞-norm attacks. The vertical bar in (a), (c), and (e) indicates the estimated
radius

√
ρ̂n(θWRM). The vertical bar in (b), (d), and (f) indicates the perturbation level that was

used for training the PGM, FGM, and IFGM models via (A.1).
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Figure A.7: Attacks on the MNIST dataset with larger (training and test) adversarial budgets. We
compare standard WRM with ∞-norm PGM, FGM, IFGM models. We illustrate test misclassifi-
cation error vs. the adversarial perturbation level εadv. Top row: PGM attacks, middle row: FGM
attacks, bottom row: IFGM attacks. Left column: Euclidean-norm attacks, right column: ∞-norm
attacks. The vertical bar in (a), (c), and (e) indicates the estimated radius

√
ρ̂n(θWRM). The ver-

tical bar in (b), (d), and (f) indicates the perturbation level that was used for training the PGM,
FGM, and IFGM models via (A.1).
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Figure A.8: Attacks on the MNIST dataset. All models are trained in the ∞-norm. We illustrate
test misclassification error vs. the adversarial perturbation level εadv. Top row: PGM attacks,
middle row: FGM attacks, bottom row: IFGM attacks. Left column: Euclidean-norm attacks, right
column: ∞-norm attacks. The vertical bar in (b), (d), and (f) indicates the perturbation level that
was used for training the PGM, FGM, and IFGM models and the estimated radius

√
ρ̂n(θWRM).
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Figure A.9: Attacks on the MNIST dataset with larger (training and test) adversarial budgets. All
models are trained in the ∞-norm. We illustrate test misclassification error vs. the adversarial
perturbation level εadv. Top row: PGM attacks, middle row: FGM attacks, bottom row: IFGM
attacks. Left column: Euclidean-norm attacks, right column: ∞-norm attacks. The vertical bar in
(b), (d), and (f) indicates the perturbation level that was used for training the PGM, FGM, and
IFGM models and the estimated radius

√
ρ̂n(θWRM).
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A.1.6 MNIST experiments when γ is chosen according to Section 2.4

We now present analysis of principled experiments on the MNIST dataset. For the chosen

architecture, we find that it is difficult to satisfy the following three objectives: γ is larger

than the bound given by Corollary 2.4, the model has high enough capacity such that

the test accuracy on clean, unperturbed data is on par with standard benchmarks (less

than 10% test error for the MNIST dataset), and the WRM model’s performance differs

appreciably from ERM’s performance. Table A.1 tests ERM and WRM models trained with

different γ with ‖ · ‖∞ PGM attacks of various εadv. Although all models enjoy good test

accuracy on clean test examples, we see that when γ is large enough to satisfy the bound

of Corollary 2.4, WRM and ERM do not differ in performance, as the perturbed examples

during training are essentially the same as the originals.

To ameliorate this issue, we regularize the weights to decrease the bound of Corollary 2.4.

Tables A.2, A.3, and A.4 present the same analysis for architectures with different l2-

regularization schemes. We choose to regularize the earlier layers (those closer to the inputs)

more heavily than later layers (those closer to the output), as the bound in Corollary 2.4

scales with the norm of earlier layer weights exponentially in the depth of the network. We

see that although

Overall, we see that high accuracy on clean test examples and appreciable adversarial

robustness hold comes at the expense of γ < γ̄ (the top rows of all tables). For γ & γ̄, high

accuracy on clean test examples hold, but adversarial robustness seems similar to that of

ERM (the bottom rows of all tables). For the most regularized models in Table A.4, the

large values of γ achieves appreciable adversarial robustness, although the regularization is

too heavy for good performance on clean examples. For this architecture, we are unable

unable to easily discover a paramtrization that satisfied all three objectives.
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γ γ̄ εadv = 0 εadv = 0.05 εadv = 0.10 εadv = 0.15 εadv = 0.20

ERM 1.97×106 0.015 0.965 1 1 1

1 1.23×106 0.015 0.112 0.484 0.916 0.994
1 ×102 1.81×106 0.015 0.916 1 1 1
1 ×104 1.97×106 0.015 0.965 1 1 1
1×106 1.97×106 0.015 0.966 1 1 1
1 ×107 1.97×106 0.015 0.966 1 1 1

Table A.1: Performance of various WRM models. We show the smoothness upper bound (γ̄) and
test error vs. εadv for ‖ · ‖∞-norm PGM attacks.

γ γ̄ εadv = 0 εadv = 0.05 εadv = 0.10 εadv = 0.15 εadv = 0.20

ERM 7.77×103 0.045 0.318 0.855 0.992 0.999

1 8.69×103 0.041 0.183 0.606 0.925 0.996
1 ×101 6.56×103 0.046 0.303 0.835 0.991 1.000
1 ×102 7.70×103 0.048 0.326 0.858 0.992 1.000
1×103 7.84×103 0.046 0.320 0.857 0.992 0.999
1 ×104 7.75×103 0.048 0.329 0.860 0.993 1.000

Table A.2: Performance of various l2-regularized WRM models. The regularization multiplier is
0.05 for the first half of the neural net layers and 0.01 for the latter half. We show the smoothness
upper bound (γ̄) and test error vs. εadv for ‖ · ‖∞-norm PGM attacks.

γ γ̄ εadv = 0 εadv = 0.05 εadv = 0.10 εadv = 0.15 εadv = 0.20

ERM 5.06×103 0.059 0.353 0.881 0.996 1.000

1 5.80×103 0.056 0.225 0.657 0.941 0.997
1×101 4.40×103 0.057 0.325 0.853 0.994 1
1×102 4.65×103 0.059 0.352 0.872 0.995 1
1×103 4.71×103 0.060 0.346 0.876 0.991 1.000
1 ×104 4.76×103 0.060 0.349 0.851 0.993 1.000

Table A.3: Performance of various l2-regularized WRM models. The regularization multiplier is
0.1 for the first half of the neural net layers and 0.01 for the latter half. We show the smoothness
upper bound (γ̄) and test error vs. εadv for ‖ · ‖∞-norm PGM attacks.
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γ γ̄ εadv = 0 εadv = 0.05 εadv = 0.10 εadv = 0.15 εadv = 0.20

ERM 5.76×102 0.117 0.433 0.852 0.988 1.000

1 5.87×102 0.117 0.364 0.717 0.952 0.996
1×101 7.61×102 0.116 0.429 0.832 0.986 1.000
1×102 8.03×102 0.121 0.442 0.849 0.986 1.000
5×102 8.06×102 0.120 0.443 0.857 0.990 1.000
1×103 8.04×102 0.115 0.436 0.846 0.987 1

Table A.4: Performance of various l2-regularized WRM models. The regularization multiplier is
0.5 for the first half of the neural net layers and 0.01 for the latter half. We show the smoothness
upper bound (γ̄) and test error vs. εadv for ‖ · ‖∞-norm PGM attacks.
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A.2 Proofs

A.2.1 Proof of Proposition 2.1

For completeness, we provide an alternative proof to that given in Blanchet and Murthy

[39] using convex analysis. Our proof is less general, requiring the cost function c to be

continuous and convex in its first argument. The below general duality result gives Propo-

sition 2.1 as an immediate special case. Recalling Rockafellar and Wets [240, Def. 14.27

and Prop. 14.33], we say that a function g : X × Z → R is a normal integrand if for each

α, the mapping

z 7→ {x | g(x, z) ≤ α}

is closed-valued and measurable. We recall that if g is continuous, then g is a normal

integrand [240, Cor. 14.34]; therefore, g(x, z) = γc(x, z)− `(θ;x) is a normal integrand. We

have the following theorem.

Theorem A.1. Let f, c be such that for any γ ≥ 0, the function g(x, z) = γc(x, z)−f(x) is

a normal integrand. (For example, continuity of f and closed convexity of c is sufficient.)

For any ρ > 0 we have

sup
P :Wc(P,Q)

∫
f(x)dP (x) = inf

γ≥0

{∫
sup
x∈X
{f(x)− γc(x, z)} dQ(z) + γρ

}
.

Proof First, the mapping P 7→Wc(P,Q) is convex in the space of probability measures.

As taking P = Q yields Wc(Q,Q) = 0, Slater’s condition holds and we may apply standard

(infinite dimensional) duality results [185, Thm. 8.7.1] to obtain

sup
P :Wc(P,Q)

∫
f(x)dP (x) = sup

P :Wc(P,Q)
inf
γ≥0

{∫
f(x)dP (x)− γWc(P,Q) + γρ

}
= inf

γ≥0
sup

P :Wc(P,Q)

{∫
f(x)dP (x)− γWc(P,Q) + γρ

}
.

Now, noting that for any M ∈ Π(P,Q) we have
∫
fdP =

∫∫
f(x)dM(x, z), we have that

the rightmost quantity in the preceding display satisfies∫
f(x)dP (x)− γ inf

M∈Π(P,Q)

∫
c(x, z)dM(x, z) = sup

M∈Π(P,Q)

{∫
[f(x)− γc(x, z)]dM(x, z)

}
.



122 APPENDIX A. CHAPTER 2 APPENDICES

That is, we have

sup
P :Wc(P,Q)

∫
f(x)dP (x) = inf

γ≥0
sup

P,M∈Π(P,Q)

{∫
[f(x)− γc(x, z)]dM(x, z) + γρ

}
. (A.3)

Now, we note a few basic facts. First, because we have a joint supremum over P and

measures M ∈ Π(P,Q) in expression (A.3), we have that

sup
P,M∈Π(P,Q)

∫
[f(x)− γc(x, z)]dM(x, z) ≤

∫
sup
x

[f(x)− γc(x, z)]dQ(z).

We would like to show equality in the above. To that end, we note that if P denotes the

space of regular conditional probabilities (Markov kernels) from Z to X, then

sup
P,M∈Π(P,Q)

∫
[f(x)− γc(x, z)]dM(x, z) ≥ sup

P∈P

∫
[f(x)− γc(x, z)]dP (x | z)dQ(z).

Recall that a conditional distribution P (· | z) is regular if P (· | z) is a distribution for each

z and for each measurable A, the function z 7→ P (A | z) is measurable. Let X denote the

space of all measurable mappings z 7→ x(z) from Z to X. Using the powerful measurability

results of Rockafellar and Wets [240, Theorem 14.60], we have

sup
x∈X

∫
[f(x(z))− γc(x(z), z)]dQ(z) =

∫
sup
x∈X

[f(x)− γc(x, z)]dQ(z)

because f−c is upper semi-continuous, and the latter function is measurable. Now, let x(z)

be any measurable function that is ε-close to attaining the supremum above. Define the

conditional distribution P (· | z) to be supported on x(z), which is evidently measurable.

Then using the preceding display, we have∫
[f(x)− γc(x, z)]dP (x | z)dQ(z) =

∫
[f(x(z))− γc(x(z), z)]dQ(z)

≥
∫

sup
x∈X

[f(x)− γc(x, z)]dQ(z)− ε

≥ sup
P,M∈Π(P,Q)

∫
[f(x)− γc(x, z)]dM(x, z)− ε.
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As ε > 0 is arbitrary, this gives

sup
P,M∈Π(P,Q)

∫
[f(x)− γc(x, z)]dM(x, z) =

∫
sup
x∈X

[f(x)− γc(x, z)]dQ(z)

as desired, which implies both equality (2.6) and completes the proof.

A.2.2 Proof of Lemma 2.1

First, note that z?(θ) is unique and well-defined by the strong convexity of f(θ, ·). For

Lipschitzness of z?(θ), we first argue that z?(θ) is continuous in θ. For any θ, optimality

of z?(θ) implies that gz(θ, z
?(θ))T (z − z?(θ)) ≤ 0. By strong concavity, for any θ1, θ2 and

z?1 = z?(θ1) and z?2 = z?(θ2), we have

λ

2
‖z?1 − z?2‖

2 ≤ f(θ2, z
?
2)−f(θ2, z

?
1) and f(θ2, z

?
2) ≤ f(θ2, z

?
1)+gz(θ2, z

?
1)T (z?2−z?1)−λ

2
‖z?1 − z?2‖

2 .

Summing these inequalities gives

λ ‖z?1 − z?2‖
2 ≤ gz(θ2, z

?
1)T (z?2 − z?1) ≤ (gz(θ2, z

?
1)− gz(θ1, z

?
1))T (z?2 − z?1),

where the last inequality follows because gz(θ1, z
?
1)T (z?2 − z?1) ≤ 0. Using a cross-Lipschitz

condition from above and Holder’s inequality, we obtain

λ ‖z?1 − z?2‖
2 ≤ ‖gz(θ2, z

?
1)− gz(θ1, z

?
1)‖? ‖z

?
1 − z?2‖ ≤ Lzθ ‖θ1 − θ2‖ ‖z?1 − z?2‖ ,

that is,

‖z?1 − z?2‖ ≤
Lzθ

λ
‖θ1 − θ2‖ . (A.4)

To see the second inequality, we show that f̄ is differentiable with ∇f̄(θ) = gθ(θ, z
?(θ)).

By using a variant of the envelope (or Danskin’s) theorem, we first show directional differ-

entiability of f̄ . Recall that we say f is inf-compact if for all θ0 ∈ Θ, there exists α > 0 and

a compact set C ⊂ Θ such that

∅ 6= {z ∈ Z : f(θ, z) ≤ α} ⊂ C
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for all θ in some neighborhood of θ0 [44]. See Bonnans and Shapiro [44, Theorem 4.13] for

a proof of the following result.

Lemma A.1. Suppose that f(·, z) is differentiable in θ for all z ∈ Z, and f , ∇zf are

continuous on Θ×Z. If f is inf-compact, then f̄ is directionally differentiable with

f̄ ′(θ, d) = sup
z∈S(θ)

∇zf(θ, z)>d

where S(θ) = argminz f(θ, z).

Now, note that from Assumption 2.2, we have

|f(θ, z)− f(θ0, z)−∇θf(θ0, z)
>(θ − θ0)| ≤ Lθθ ‖θ − θ0‖

from which it is easy to see that f is inf-compact. Applying Lemma A.1 to f̄ and noting

that S(θ) is unique by strong convexity of f(θ, ·), we have that f̄ is directionally differen-

tiable with ∇f̄(θ) = gθ(θ, z
?(θ)). Since gθ is continuous by Assumption 2.2 and z?(θ) is

Lipschitz (A.4), we conclude that f̄ is differentiable.

Finally, we have

‖gθ(θ1, z
?
1)− gθ(θ2, z

?
2)‖? ≤ ‖gθ(θ1, z

?
1)− gθ(θ1, z

?
2)‖? + ‖gθ(θ1, z

?
2)− gθ(θ2, z

?
2)‖?

≤ Lθz ‖z?1 − z?2‖+ Lθθ ‖θ1 − θ2‖

≤
(
Lθθ +

LθzLzθ

λ

)
‖θ1 − θ2‖ ,

where we have used inequality (A.4) again. This is the desired result.

A.2.3 Proof of Theorem 2.1

Our proof is based on that of Ghadimi and Lan [110]. For shorthand, let f(θ, z; z0) =

`(θ; z)− γc(z, z0), noting that we perform gradient steps with

gt = ∇θf(θt, ẑt; zt)

for ẑt an ε-approximate maximizer of f(θ, z; zt) in z, and θt+1 = θt − αtgt. We assume

αt ≤ 1
Lφ

in the rest of the proof, which is satisfied for the constant stepsize α =
√

∆F
LφTσ2
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and T ≥ Lφ∆F

σ2 . By a Taylor expansion using the Lφ-smoothness of the objective F , we

have

F (θt+1) ≤ F (θt) +
〈
∇F (θt), θt+1 − θt

〉
+
Lφ
2

∥∥θt+1 − θt
∥∥2

2

= F (θt)− αt
∥∥∇F (θt)

∥∥2

2
+
Lφα

2
t

2

∥∥gt∥∥2

2
+ αt

〈
∇F (θt),∇F (θt)− gt

〉
= F (θt)− αt

(
1− 1

2
Lφαt

)∥∥∇F (θt)
∥∥2

2
(A.5)

+ αt (1− Lφαt)
〈
∇F (θt),∇F (θt)− gt

〉
+
Lφα

2
t

2

∥∥gt −∇F (θt)
∥∥2

2
.

Recalling the definition (2.2b) of φγ(θ; z0) = supz∈Z f(θ, z; z0), we define the potentially

biased errors δt = gt−∇θφγ(θt; zt). Substituting the this into the progress guarantee (A.5),

we have

F (θt+1) ≤ F (θt)− αt
(

1− 1

2
Lφαt

)∥∥∇F (θt)
∥∥2

2
+ αt (1− Lφαt)

〈
∇F (θt),∇F (θt)−∇θφγ(θ; zt)

〉
− αt (1− Lφαt)

〈
∇F (θt), δt

〉
+
Lφα

2
t

2

∥∥∇θφγ(θ; zt) + δt −∇F (θt)
∥∥2

2

= F (θt)− αt
(

1− 1

2
Lφαt

)∥∥∇F (θt)
∥∥2

2
+ αt (1− Lφαt)

〈
∇F (θt),∇F (θt)−∇θφγ(θ; zt)

〉
− αt (1− Lφαt)

〈
∇F (θt), δt

〉
+
Lφα

2
t

2

(∥∥δt∥∥2

2
+
∥∥∇θφγ(θ; zt)−∇F (θt)

∥∥2

2
+ 2

〈
∇θφγ(θ; zt)−∇F (θt), δt

〉)
.

Using ±〈a, b〉 ≤ 1
2 ‖a‖

2
2 + 1

2 ‖b‖
2
2 in the preceding display, we get

F (θt+1) ≤ F (θt)− αt
2

∥∥∇F (θt)
∥∥2

2
+ αt (1− Lφαt)

〈
∇F (θt),∇F (θt)−∇θφγ(θ; zt)

〉
+
αt (1 + Lφαt)

2

∥∥δt∥∥2

2
+ Lφα

2
t

∥∥∇θφγ(θ; zt)−∇F (θt)
∥∥2

2
(A.6)

Letting zt? = argmaxz f(θt, z; zt), note that the error δt satisfies

∥∥δt∥∥2

2
=
∥∥∇θφγ(θt; zt)−∇θf(θ, ẑt; zt)

∥∥2

2
=
∥∥∇θ`(θ, zt?)−∇θ`(θ, ẑt)∥∥2

2

≤ L2
θz‖ẑt − zt?‖22 ≤

2L2
θz

λ
ε,
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where the final inequality uses the λ = γ − Lzz strong-concavity of z 7→ f(θ, z; z0). For

shorthand, let ε̂ =
2L2

θz
γ−Lzz

ε. Taking conditional expectations in the bound (A.6) and using

E[∇θφγ(θt; zt) | θt] = ∇F (θt), we have

E[F (θt+1)− F (θt) | θt] ≤− αt
2

∥∥∇F (θt)
∥∥2

2
+
αt(1 + Lφαt)

2
ε̂+ Lφα

2
t

∥∥∇θφγ(θ; zt)−∇F (θt)
∥∥2

2

≤ −αt
2

∥∥∇F (θt)
∥∥2

2
+ αtε̂+ Lφα

2
t

∥∥∇θφγ(θ; zt)−∇F (θt)
∥∥2

2
,

where we use the fact that αt ≤ 1
Lφ

. For a fixed stepsize α, taking the total expectation

yields

E
[∥∥∇F (θt)

∥∥2

2

]
− 2ε̂ ≤ 2

α
E[F (θt)− F (θt+1)] + 2Lφασ

2

since we have E[‖∇φγ(θ;Z)−∇F (θ)‖22] ≤ σ2 by assumption. Summing over t, we have

1

T

T−1∑
t=0

E
[∥∥∇F (θt)

∥∥2

2

]
− 2ε̂ ≤ 2

αT

(
F (θ0)− E[F (θT )]

)
+ 2Lφασ

2

≤ 2∆F

αT
+ 2Lφασ

2,

where the latter inequality holds since infθ F (θ) ≤ F (θT ). Plugging in α =
√

∆F
LφTσ2 gives

the result.

A.2.4 Proof of Lemma 2.2

First, we introduce the decision reformulation of the problem: for some b, we ask whether

there exists some u such that `(θ; z+u) ≥ b. The decision reformulation for an NPO problem

is in NP, as a certificate for the decision problem can be verified in polynomial time. By

appropriate scaling of θ, v, and w, Katz et al. [152] show that 3-SAT Turing-reduces to this

decision problem: given an oracle D for the decision problem, we can solve an arbitrary

instance of 3-SAT with a polynomial number of calls to D. The decision problem is thus

NP-complete.

Now, consider an oracle O for the optimization problem. The decision problem Turing-

reduces to the optimization problem, as the decision problem can be solved with one call

to O. Thus, the optimization problem is NP-hard.
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A.2.5 Proof of Theorem 2.2

We first show the bound (2.11). From the duality result (2.5), we have the deterministic

result that

sup
P :Wc(P,Q)≤ρ

EQ[`(θ;Z)] ≤ γρ+ EQ[φγ(θ;Z)]

for all ρ > 0, distributions Q, and γ ≥ 0. Next, we show that E
P̂n

[φγ(θ;Z)] concentrates

around its population counterpart at the usual rate [47].

First, we have that

φγ(θ; z) ∈ [−M`,M`],

because −M` ≤ `(θ; z) ≤ φγ(θ; z) ≤ supz `(θ; z) ≤ M`. Thus, the functional θ 7→ Fn(θ)

satisfies bounded differences [48, Thm. 6.2], and applying standard results on Rademacher

complexity [22] and entropy integrals [288, Ch. 2.2] gives the result.

To see the second result (2.12), we substitute ρ = ρ̂n in the bound (2.11). Then, with

probability at least 1− e−t, we have

sup
P :Wc(P,P0)≤ρ̂n(θ)

EP [`(θ;Z)] ≤ γρ̂n(θ) + E
P̂n

[φγ(θ;Z)] + εn(t).

Since we have

sup
P :Wc(P,P̂n)≤ρ̂n(θ)

EP [`(θ;Z)] = E
P̂n

[φγ(θ;Z)] + γρ̂n(θ).

from the strong duality in Proposition 2.1, our second result follows.

A.2.6 Proof of Corollary 2.2

The result is essentially standard [288], which we now give for completeness. Note that for

F = {`(θ; ·) : θ ∈ Θ}, any (ε, ‖·‖)-covering {θ1, . . . , θN} of Θ guarantees that mini |`(θ;X)−
`(θi;X)| ≤ Lε for all θ,X, or

N(F , ε, ‖·‖L∞(X )) ≤ N(Θ, ε/L, ‖·‖) ≤
(

1 +
diam(Θ)L

ε

)d
,
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where diam(Θ) = supθ,θ′∈Θ ‖θ − θ′‖. Noting that |`(θ;Z)| ≤ Ldiam(Θ) + M0 =: M`, we

have the result.

A.2.7 Proof of Theorem 2.3

Define

P ∗n(θ) := argmax
P

{
EP [`(θ;Z)]− γWc(P, P̂n)

}
,

P ∗(θ) := argmax
P

{EP [`(θ;Z)]− γWc(P, P0)} .

First, we show that P ∗(θ) and P ∗n(θ) are attained for all θ ∈ Θ. We omit the dependency

on θ for notational simplicity and only show the result for P ∗(θ) as the case for P ∗n(θ) is

symmetric. Let P ε be an ε-maximizer, so that

EP ε [`(θ;Z)]− γWc(P
ε, P0) ≥ sup

P
{EP [`(θ;Z)]− γWc(Pn, P0)} − ε.

As Z is compact, the collection {P 1/k}k∈N is a uniformly tight collection of measures. By

Prohorov’s theorem [36, Ch 1.1, p. 57], (restricting to a subsequence if necessary), there

exists some distribution P ∗ on Z such that P 1/k d
 P ∗ as k →∞. Continuity properties of

Wasserstein distances [290, Corollary 6.11] then imply that

lim
k→∞

Wc(P
1/k, P0) = Wc(P

∗, P0). (A.7)

Combining (A.7) and the monotone convergence theorem, we obtain

EP ∗ [`(θ;Z)]− γWc(P
∗, P0) = lim

k→∞

{
EP 1/k [`(θ;Z)]− γWc(P

1/k, P0)
}

≥ sup
P
{EP [`(θ;Z)]− γWc(P, P0)} .

We conclude that P ∗ is attained for all P0.

Next, we show the concentration result (2.18). Recall the definition (2.9) of the trans-

portation mapping

T (θ, z) := argmax
z′∈Z

{
`(θ; z′)− γc(z′, z)

}
,

which is unique and well-defined under our strong concavity assumption that γ > Lzz,
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and smooth (recall Eq. (2.16)) in θ. Then by Proposition 2.1 (or by using a variant of

Kantorovich duality [290, Chs. 9–10]), we have

EP ∗n(θ)[`(θ;Z) = E
P̂n

[`(θ;T (θ;Z))] and EP ∗(θ)[`(θ;Z) = EP0 [`(θ;T (θ;Z))]

Wc(P
∗
n(θ), P̂n) = E

P̂n
[c(T (θ;Z), Z)] and Wc(P

∗(θ), P0) = EP0 [c(T (θ;Z), Z)].

We now proceed by showing the uniform convergence of

E
P̂n

[c(T (θ;Z), Z)] to EP0 [c(T (θ;Z), Z)]

under both cases (i), that c is Lipschitz, and (ii), that ` is Lipschitz in z, using a covering

argument on Θ. Recall inequality (2.16) (i.e. Lemma 2.1), which is that

‖T (θ1; z)− T (θ2; z)‖ ≤ Lzθ

[γ − Lzz]+
‖θ1 − θ2‖ .

We have the following lemma.

Lemma A.2. Assume the conditions of Theorem 2.3. Then for any θ1, θ2 ∈ Θ,

|c(T (θ1; z), z)− c(T (θ2; z), z)| ≤ LcLzθ

[γ − Lzz]+
‖θ1 − θ2‖ .

Proof In the first case, that c is Lc-Lipschitz in its first argument, this is trivial: we have

|c(T (θ1; z), z)− c(T (θ2; z), z)| ≤ Lc ‖T (θ1; z)− T (θ2; z)‖ ≤ LcLzθ

[γ − Lzz]+
‖θ1 − θ2‖

by the smoothness inequality (2.16) for T .

In the second case, that z 7→ `(θ, z) is Lc-Lipschitz, let zi = T (θi; z) for shorthand. Then

we have

γc(z2, z)− γc(z1, z) = γc(z2, z)− `(θ2, z2) + `(θ2, z2)− γc(z1, z)

≤ γc(z1, z)− `(θ2, z1) + `(θ2, z2)− γc(z1, z) = `(θ2, z2)− `(θ2, z1),
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and similarly,

γc(z2, z)− γc(z1, z) = γc(z2, z)− `(θ1, z1) + `(θ1, z1)− γc(z1, z)

≥ γc(z2, z)− `(θ1, z1) + `(θ1, z2)− γc(z2, z) = `(θ1, z2)− `(θ1, z1).

Combining these two inequalities and using that

|`(θ, z2)− `(θ, z1)| ≤ γLc ‖z2 − z1‖

for any θ gives the result.

Using Lemma A.2 we obtain that θ 7→ |E
P̂n

[c(T (θ;Z), θ)]−EP0 [c(T (θ;Z), Z)]| is 2LcLzθ/ [γ − Lzz]+-

Lipschitz. Let Θcover = {θ1, · · · , θN} be a
[γ−Lzz]+t

4LcLzθ
-cover of Θ with respect to ‖·‖. From

Lipschitzness of |E
P̂n

[c(T (θ;Z), Z)]−EP0 [c(T (θ;Z), Z)]|, we have that if for all θ ∈ {Θcover},

|E
P̂n

[c(T (θ;Z), Z)]− EP0 [c(T (θ;Z), θ)]| ≤ t

2
,

then it follows that

sup
θ∈Θ
|E
P̂n

[c(T (θ;Z), Z)]− EP0 [c(T (θ;Z), Z)]| ≤ t.

Under the first assumption (i), we have |c(T (θ;Z), Z)| ≤ 2LcMz. Applying Hoeffding’s

inequality, for any fixed θ ∈ Θ

P
(
|E
P̂n

[c(T (θ;Z), Z)]− EP0 [c(T (θ;Z), Z)]| ≥ t

2

)
≤ 2 exp

(
− nt2

32L2
cM

2
z

)
.

Taking a union bound over θ1, · · · , θN , we conclude that

P
(

sup
θ∈Θ
|E
P̂n

[c(T (θ;Z), Z)]− EP0 [c(T (θ;Z), Z)]| ≥ t
)
≤ 2N

(
Θ,

[γ − Lzz]+ t

4LcLzθ
, ‖·‖

)
exp

(
− nt2

32L2
cM

2
z

)
which was our desired result (2.18).

Under the second assumption (ii), we have from the definition of the transport map T

γc(T (θ; z), z) ≤ `(θ; z) ≤M`
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and hence |c(T (θ;Z), Z)| ≤M`/γ. The result for the second case follows from an identical

reasoning.

A.2.8 Proof of Proposition 2.2

From the chain rule, we can write down the Jacobian JxFl(θ;x) of x 7→ Fl(θ;x) recursively.

Lemma A.3. If σl is differentiable for all l = 1, . . . , L, then x 7→ Fl(θ;x) is differentiable

with

JxFl(θ;x) = ∇σl(θl · Fl−1(θ;x)) · θl · JxFl−1(θ;x)

for all l = 1, . . . , L. Using the convention
∏L
l=1Al = AL · · ·A1 for matrix products,

JxFl(θ;x) =
L∏
l=1

∇σl(θl · Fl−1(θ;x)) · θl.

To prove the first result of the proposition, we proceed by induction. For l = 1 and any

x, x′ ∈ X ,

∥∥F1(θ;x)− F1(θ;x′)
∥∥

2
=
∥∥σ1(θ1 · x)− σ1(θ1 · x′)

∥∥
2

≤ L0
1 ‖θ1‖op

∥∥x− x′∥∥
2
.

By induction, we conclude that for l ≥ 2,

∥∥Fl(θ;x)− Fl(θ;x′)
∥∥

2
=
∥∥σl(θl · Fl−1(θ;x))− σl(θl · Fl−1(θ;x′))

∥∥
2

≤ L0
l ‖θl‖op

∥∥Fl−1(θ;x)− Fl−1(θ;x′)
∥∥

2

≤
∥∥x− x′∥∥

2

l∏
j=1

L0
j ‖θj‖op .

To show that JFl(θ; ·) is Lipschitz with respect to the operator norm, note from Lemma A.3
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that

JxFl(θ;x)− JxFl(θ;x′) =
l∏

j=1

(
∇σj(θj · Fj−1(θ;x))−∇σj(θj · Fj−1(θ;x′))

)
· θj

=

l∑
j=1

 l∏
k=j+1

∇σk(θk · Fk−1(θ;x′)) · θk


︸ ︷︷ ︸

(a)

·
(
∇σj(θj · Fj−1(θ;x))−∇σj(θj · Fj−1(θ;x′))

)︸ ︷︷ ︸
(b)

· θj · JxFj−1(θ;x)︸ ︷︷ ︸
(c)

(A.8)

where the last equality followed from telescoping summands. Here, we let F0(θ;x) = x

notational convenience and define the product
∏b
a · = 1 when a > b.

We now bound the operator norms of the three terms (a), (b), and (c). From As-

sumption 2.5 and the submultiplicativity of the operator norm, term (a) can be bounded

by ∥∥∥∥∥∥
l∏

k=j+1

∇σk(θk · Fk−1(θ;x′)) · θk

∥∥∥∥∥∥
op

≤
l∏

k=j+1

L0
k ‖θk‖op .

From Assumption 2.5, we can bound term (b) by

∥∥∇σj(θj · Fj−1(θ;x))−∇σj(θj · Fj−1(θ;x′))
∥∥

op
≤ L1

j

∥∥θj · (Fj−1(θ;x)− Fj−1(θ;x′))
∥∥

2

≤ L1
j ‖θj‖op

(
j−1∏
k=1

L0
k ‖θk‖op

)∥∥x− x′∥∥
2

where the last inequality follows from the first part of the proof. Lastly, term (c) is bounded

by from the first part of the proof

‖θj · JxFj−1(θ;x)‖op ≤ ‖θj‖op

j−1∏
k=1

L0
k ‖θk‖op .
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Collecting these bounds and applying them in the representation (A.8), triangle inequal-

ity and submultiplicativity of the operator norm yields

∥∥JxFl(θ;x)− JxFl(θ;x′)
∥∥

op
≤

l∑
j=1

 l∏
k=j+1

L0
k ‖θk‖op

 · L1
j · ‖θj‖op ·

(
j−1∏
k=1

L0
k ‖θk‖op

)

·
∥∥x− x′∥∥

2
· ‖θj‖op ·

(
j−1∏
k=1

L0
k ‖θk‖op

)
= βl(θ)

∥∥x− x′∥∥
2
.

A.2.9 Proof of Corollary 2.4

Denote the softmax function σy : RK → R

σy(x) := − log py(x) = − log
exp(xy)∑K
j=1 exp(xj)

.

We consider calculating L0 and L1 for this map. Note that

∇σy(x) = p(x)− ey,∇2σy(x) = diag p(x)− p(x)p(x)T ,

where p(x) =
∑K

k=1 pk(x)ek. Then,

L0 = sup
x
‖∇σy(x)‖2 = sup

x
‖p(x)− ey‖2 =

√
2,

where the last equality results from the fact that g(z) := ‖z − ey‖2 is convex in z and there-

fore supz∈Z g(z) is attained at a corner of the probability simplex Z := {z|z ≥ 0,
∑

i zi = 1},
namely any corner other than ey.

The eigenvalues of diag p(x) are pi(x) and therefore satisfy λ(diag p(x)) ∈ [0, 1]. The

eigenvalues of p(x)p(x)T satisfy λ(p(x)p(x)T ) ∈ {0, ‖p(x)‖22}. Then, by Weyl’s inequality, we

have λ(∇2σy(x)) ∈ [−‖p(x)‖22 , 1]. Again using convexity of ‖·‖2, we have supx ‖p(x)‖2 = 1,

as the supremum is attained at a corner of the probability simplex. Then λ(∇2σy(x)) ∈
[−1, 1], whereby L1 = 1.

An equivalent recursive way of expressing the Lipschitz constants αl(θ) and βl(θ) (2.21)
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is

αl+1(θ) = L0
l+1 ‖θl+1‖op αl(θ)

βl+1(θ) =
αl+1(θ)

αl(θ)
βl(θ) +

L1
l+1

(L0
l+1)2

αl+1(θ)2,

with β0(θ) = α0(θ) = 1. Then, considering an (L + 1)-layer network where θL+1 = I and

σL+1 is the softmax function, we have

βL+1(θ) =
√

2βL(θ) + αL(θ)2.

A.3 Proximal algorithm for ‖·‖∞-norm robustness

In this section, we give a efficient training algorithm that learns to defend against ‖·‖∞-

norm perturbations. For simplicity, we assume Z = Rm for the rest of this section. Let

θ ∈ Θ be some fixed model, z0 ∈ Z a natural example1 and define f(z) := `(θ; z) to ease

notation. Concretely, we are interested in solving the optimization problem

maximize
z

f(z)− α

2

∥∥z − z0
∥∥2

∞

Note that this is equivalent to computing the surrogate loss φγ(θ; z0) = supz∈Z{`(θ; z) −
γc(z, z0)} for c(z, z0) =

∥∥z − z0
∥∥2

∞ and α = 2γ. Our following treatment can easily be

modified for the supervised learning scenario c((x, y), (x0, y0)) =
∥∥x− x0

∥∥2

∞+∞·1
{
y = y0

}
with the convention that ∞· 0 = 0. To make our notation consistent with the optimization

literature, we consider the minimization problem

minimize
z

−f(z) +
α

2

∥∥z − z0
∥∥2

∞ . (A.9)

A simple gradient descent algorithm applied to the problem (A.9) may be slow to con-

verge in practice. Intuitively, this is because the subgradient of z 7→ 1
2

∥∥z − z0
∥∥2

∞ is given by∥∥z − z0
∥∥
∞ · s where s is a m-dimensional vector taking values in [−1, 1] whose coordinates

are non-zero only when |zj − z0,j | =
∥∥z − z0

∥∥
∞. Hence, at any given iteration of gradient

descent, the ‖·‖∞-norm penalty term only gets accounted for by at most a few coordinates.

To remedy this issue, we consider a proximal algorithm for solving the problem (A.9)

1We depart from our convention of denoting original datapoints as z0 to ease forthcoming notation.
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(see, for example, Parikh and Boyd [228] for an comprehensive review of proximal algo-

rithms). For a function g : Z → R and a positive number λ > 0, the proximal operator for

λg is defined by

proxλg(v) := argmin
z

{
g(z) +

1

2λ
‖z − v‖22

}
.

Then, the proximal algorithm on the problem (A.9) consists of two steps at each iteration

t: (i) for the smooth function −f(z), take a gradient descent step at the current iterate zt

(zt+
1
2 below) and (ii) for the non-smooth function

∥∥z − z0
∥∥2

∞, take a proximal step for the

function λtα
2

∥∥· − z0
∥∥2

∞ at zt+
1
2 (zt+1 below):

zt+
1
2 = zt + λt∇f(zt), zt+1 = proxλtα

2
‖·−z0‖2∞

(
zt+

1
2

)
. (A.10)

The following proposition shows that we can compute the proximal step zt+1 efficiently,

simply by sorting the vector |zt+
1
2 − z0|. We denote by vt, the sorted vector of |zt+

1
2 − z0|

in decreasing order. In the proposition, we use the notation [·]+ = max(·, 0).

Proposition A.1. Define the scale parameter βt > 0 by

βt :=
1

1 + αλtjt

jt∑
i=1

vti where jt := max

{
j ∈ [m] :

j−1∑
i=1

vi −
(

1

αλt
+ (j − 1)

)
vj < 0

}
.

(A.11)

Then, zt+1 in the proximal update (A.10) is given by

zt+1 = zt+
1
2 −

[
|zt+

1
2 − z0| − βt

]
+

sign
(
zt+

1
2 − z0

)
. (A.12)

See Section A.3.1 for the proof of the proposition. From the proposition, we obtain the

proximal procedure in Algorithm A.1 that can be used to (heuristically) solve for the ap-

proximate maximizer of `(θ; z)−γc(z, z0) in Algorithm 2.1. Roughly speaking, ignoring the

truncation term in the proximal update (A.12), we have

zt+1 ≈ z0 + βt sign(zt + λt∇f(zt)− z0).

Here, we move towards the sign of zt+λt∇f(zt)−z0 modulated by the term βt, as opposed

to just the sign of ∇f(zt) for the iterated fast sign gradient method [116, 170].
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Algorithm A.1 Proximal Algorithm for Maximizing f(z)− α
2

∥∥z − z0
∥∥2

∞

Input: Stepsizes λt

for t = 0, . . . , T − 1 do
zt+

1
2 ← zt + λt∇f(zt)

vt ← sort(|zt+
1
2 − z0|,dec)

Compute βt as in (A.11)

zt+1 ← zt+
1
2 −

[
|zt+

1
2 − z0| − βt

]
+

sign
(
zt+

1
2 − z0

)

A.3.1 Proof of Proposition A.1

In this proof, we drop the subscript on the iteration t to ease notation. We assume without

loss of generality that zt+
1
2 − z0 6= 0. For some convex, lower semi-continuous function

g : Rm → R, let g∗(s) = sups{s>t− g(t)} be the Fenchel conjuagte of g. From the Moreau

decomposition [228, Section 2.5], we have

proxg(w) + proxg∗(w) = w

for any w ∈ Rm. Noting that the conjugate of z 7→ αλ
2 ‖z − z0‖2∞ is given by z 7→ z>z0 +

1
2αλ ‖z‖

2
1, we have

proxαλ
2
‖·−z0‖2∞

(w) = w − prox〈z0,·〉+ 1
2αλ
‖·‖21

(w) = w − prox 1
2αλ
‖·‖21

(w − z0)

Let us denote the sorted vector (in decreasing order) of |w− z0| by v. Then, in light of the

preceeding display, it suffices to show that

prox 1
2αλ
‖·‖21

(w − z0) = [|w − z| − β?]+ sign
(
w − z0

)
(A.13)

where β? is defined as in (A.11). To show that equality (A.13) holds, note that the first

order optimality conditions for

prox 1
2αλ
‖·‖21

(w − z0) = argmin
z

{
1

2
‖z‖21 +

αλ

2

∥∥z − (w − z0)
∥∥2

2

}
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is given by

‖z‖1 sign(zi) + αλ(zi − wi + z0
i ) = 0 if |zi| 6= 0 (A.14a)

‖z‖1 [−1, 1]− αλ(wi − z0
i ) 3 0 if |zi| = 0. (A.14b)

Now, we use the following elementary lemma.

Lemma A.4. For 0 6= v ≥ 0 with decreasing coordinates, the solution to the equation

∑
i:vi>β

(vi − β) = αλβ

exists and is given by

β? :=
1

1 + αλj?

j∑
i=1

vi where j? := max

{
j ∈ [m] :

j−1∑
i=1

vi −
(

1

αλ
+ (j − 1)

)
vj < 0

}
.

Proof of Lemma First, note that β 7→
∑

i:vi>β
(vi − β) − αλβ =: h(β) is decreasing.

Noting that ‖v‖1 > 0 and −αλ ‖v‖∞ < 0, there exists β′ such that h(β′) = 0 and β′ ∈
(0, ‖v‖∞). Since vi’s are decreasing and nonnegative, there exists j′ such that vj′ > β′ ≥
vj′+1 (we abuse notation and let vm+1 := 0). Then, we have

j′−1∑
i=1

(vi − vj′)− αλvj′ < 0 ≤
j′∑
i=1

(vi − vj′+1)− αλvj′+1.

That is, j′ = j?. Solving for β′ in

0 = h(β′) =

j?∑
i=1

vi − (αλ+ j?)β′,

we obtain β′ = β? as claimed.

Now, define

z? =
[
|w − z0| − β?

]
+

sign
(
w − z0

)
.
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Then, we have from Lemma A.4 that

‖z?‖1 =
∑

i:|wi−z0i |>β?
(|wi − z0

i | − β?) =

j?∑
i=1

(vi − β?) = αλβ?.

If z?i > 0, then sign(z?i ) = sign(wi − z0
i ) so that

‖z?‖1 sign(zi) + αλ(z?i − wi + z0
i ) = 0.

If z?i = 0, then |wi − z0
i | ≤ β? and

‖z?‖1 [−1, 1]− αλ(wi − z0
i ) = αλβ?[−1, 1]− αλ(wi − z0

i ) 3 0.

Hence, z? satisfies the optimality condition (A.14) as desired.



Appendix B

Chapter 3 Appendices

B.1 Offline population synthesis

Here we provide extra details for Section 3.2.

Horizontal steps Horizontal steps occur as follows. Two random particles are sampled

uniformly at random from adjacent temeprature levels. This forms a proposal for the

swap, which is then accepted via standard MH acceptance conditions. Because the rest of

the particles remain as-is, the acceptance condition reduces to a particualrly simple form

(cf. Algorithm B.1).

Algorithm B.1 Horizontal swap

Sample i ∼ Uniform(1, 2, . . . , L− 1).

Sample j, k
i.i.d.∼ Uniform(1, 2, . . . , D).

Sample p ∼ Uniform([0, 1])

Let a = min
(

1, ef(xi,j ,θi,j)−f(xi+1,k,θi+1,k)
)

if p < aβi−βi+1

swap configurations (xi,j , θi,j) and (xi+1,k, θi+1,k)

We ran our experiments on a server with 88 Intel Xeon cores @ 2.20 GHz. Each run of

100 iterations for a given hyperparameter setting α took 20 hours.

B.2 Online robust planning

Here we provide extra details for Section 3.3.

139
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B.2.1 Solving problem (3.5)

We can rewrite the constraint Dφ (q||1/Nw) ≤ ρ as ‖q− 1/Nw‖2 ≤ ρ/Nw. Then, the partial

Lagrangian can be written as

L(q, λ) =
∑
i

qici(t)−
λ

2

(
‖q − 1/Nw‖2 − ρ/Nw

)
.

By inspection of the right-hand side, we see that, for a given λ, finding v(λ) = supq∈∆ L(q, λ)

is equivalent to a Euclidean-norm projection of the vector 1/Nw+c(t)/λ onto the probability

simplex ∆. This latter problem is directly amenable to the methods of Duchi et al. [87].

B.2.2 Proof of Proposition 3.1

We redefine notation to suppress dependence of the cost C on other variables and just

make explicit the dependence on the random index J . Namely, we let C : J → [−1, 1] be

a function of the random index J . We consider the convergence of

sup
Q∈PNw

EQ[C(J)] to sup
Q∈P

EQ[C(J)].

To ease notation, we hide dependence on J and for a sample J1, . . . , JNw of random vectors

Jk, we denote Ck := C(Jk) for shorthand, so that the Ck are bounded independent random

variables. Our proof technique is similar in style to that of Sinha and Duchi [264]. We

provide proofs for technical lemmas that follow in support of Proposition 3.1 that are

shorter and more suitable for our setting (in particular Lemmas B.1 and B.3).

Treating C = (C1, . . . , CNw) as a vector, the mapping C 7→ supQ∈PNw EQ[C] is a
√
ρ+ 1/

√
Nw-Lipschitz convex function of independent bounded random variables. Indeed,

letting q ∈ RNw+ be the empirical probability mass function associated with Q ∈ PNw , we

have 1
Nw

∑Nw
i=1(Nwqi)

2 ≤ ρ+ 1 or ‖q‖2 ≤
√

(1 + ρ)/Nw. Using Samson’s sub-Gaussian con-

centration inequality [253] for Lipschitz convex functions of bounded random variables, we

have with probability at least 1− δ that

sup
Q∈PNw

EQ[C] ∈ E

[
sup

Q∈PNw
EQ[C]

]
± 2
√

2

√
(1 + ρ) log 2

δ

Nw
. (B.1)
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By the containment (B.1), we only need to consider convergence of

E

[
sup

Q∈PNw
EQ[C]

]
to sup

Q∈P
EQ[C],

which we do with the following lemma.

Lemma B.1 (Sinha and Duchi [264]). Let Z = (Z1, . . . , ZNw) be a random vector of inde-

pendent random variables Zi
i.i.d.∼ P0, where |Zi| ≤M with probability 1. Let Cρ = 2(ρ+1)√

1+ρ−1
.

Then

E

[
sup

Q∈PNw
EQ[Z]

]
≥ sup

Q∈P
EQ[Z]− 4CρM

√
log(2Nw)

Nw

and

E

[
sup

Q∈PNw
EQ[Z]

]
≤ sup

Q∈P
EQ[Z].

See Appendix B.2.3 for the proof.

Combining Lemma B.1 with containment (B.1) gives the result.

B.2.3 Proof of Lemma B.1

Before beginning the proof, we first state a technical lemma.

Lemma B.2 (Ben-Tal et al. [28]). Let φ be any closed convex function with domain domφ ⊂
[0,∞), and let φ∗(s) = supt≥0{ts− φ(t)} be its conjugate. Then for any distribution P and

any function g :W → R we have

sup
Q:Dφ(Q||P )≤ρ

∫
g(w)dQ(w) = inf

λ≥0,η

{
λ

∫
φ∗
(
g(w)− η

λ

)
dP (w) + ρλ+ η

}
.

See Appendix B.2.4 for the proof.

We prove the result for general φ-divergences φ(t) = tk − 1, k ≥ 2. To simplify algebra,

we work with a scaled version of the φ-divergence: φ(t) = 1
k (tk−1), so the scaled population

and empirical constraint sets we consider are defined by

P =
{
Q : Dφ (Q||P0) ≤ ρ

k

}
and PNw :=

{
q : Dφ (q||1/Nw) ≤ ρ

k

}
.
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E

[
sup

Q∈PNw
EQ[Z]

]
= EP0

[
inf
λ≥0,η

1

Nw

Nw∑
i=1

λφ∗
(
Zi − η
λ

)
+ η +

ρ

k
λ

]

≤ inf
λ≥0,η

EP0

[
1

Nw

Nw∑
i=1

λφ∗
(
Zi − η
λ

)
+ η +

ρ

k
λ

]

= inf
λ≥0,η

{
EP0

[
λφ∗

(
Z − η
λ

)]
+
ρ

k
λ+ η

}
= sup

Q∈P
EQ[Z].

This proves the upper bound in Lemma B.1.

Now we focus on the lower bound. For the function φ(t) = 1
k (tk − 1), we have φ∗(s) =

1
k∗ [s]k

∗

+ + 1
k , where 1/k∗ + 1/k = 1, so that the duality result in Lemma B.2 gives

sup
Q∈PNw

EQ[Z] = inf
η

{
(1 + ρ)

1/k

(
1

Nw

Nw∑
i=1

[Zi − η]
k∗

+

) 1
k∗

+ η

}
.

Because |Zi| ≤ M for all i, we claim that any η minimizing the preceding expression must

satisfy

η ∈

[
−1 + (1 + ρ)

1
k∗

(1 + ρ)
1
k∗ − 1

, 1

]
·M. (B.2)

For convenience, we first define the shorthand

SNw(η) := (1 + ρ)1/k

(
1

Nw

Nw∑
i=1

[Zi − η]k
∗

+

) 1
k∗

+ η.

Then it is clear that η ≤M , because otherwise we would have SNw(η) > M ≥ infη SNw(η).

Let the lower bound be of the form η = −cM for some c > 1. Taking derivatives of the
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objective SNw(η) with respect to η, we have

S′Nw(η) = 1− (1 + ρ)1/k
1
Nw

∑Nw
i=1 [Zi − η]k

∗−1
+(

1
Nw

∑Nw
i=1 [Zi − η]k

∗

+

)1− 1
k∗

≤ 1− (1 + ρ)1/k

(
(c− 1)M

(c+ 1)M

)k∗−1

= 1− (1 + ρ)1/k

(
c− 1

c+ 1

)k∗−1

.

For any c > cρ,k := (1+ρ)
1
k∗ +1

(1+ρ)
1
k∗ −1

, the preceding display is negative, so we must have η ≥

−cρ,kM . For the remainder of the proof, we thus define the interval

U := [−Mcρ,k,M ] , cρ,k =
(1 + ρ)

1
k∗ + 1

(1 + ρ)
1
k∗ − 1

,

and we assume w.l.o.g. that η ∈ U .

Again applying the duality result of Lemma B.2, we have that

E

[
sup

Q∈PNw
EQ[Z]

]
= E

[
inf
η∈U

SNw(η

]
= E

[
inf
η∈U
{SNw(η)− E[SNw(η)] + E[SNw(η)]}

]
≥ inf

η∈U
E[SNw(η)]− E

[
sup
η∈U
|SNw(η)− E[SNw(η)]|

]
. (B.3)

To bound the first term in expression (B.3), we use the following lemma.

Lemma B.3 (Sinha and Duchi [264]). Let Z ≥ 0, Z 6≡ 0 be a random variable with finite

2p-th moment for 1 ≤ p ≤ 2. Then we have the following inequality:

E

[(
1

n

n∑
i=1

Zpi

) 1
p

]
≥ ‖Z‖p −

p− 1

p

√
2

n

√
Var(Zp/E[Zp])‖Z‖2, (B.4a)
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and if ‖Z‖∞ ≤ C, then

E

[(
1

n

n∑
i=1

Zpi

) 1
p

]
≥ ‖Z‖p − C

p− 1

p

√
2

n
. (B.4b)

See Appendix B.2.5 for the proof. Now, note that [Z − η]+ ∈ [0, 1+cρ,k]M and (1 + ρ)1/k(1+

cρ,k) =: Cρ,k. Thus, by Lemma B.3 we obtain that

E[SNw(η)] ≥ (1 + ρ)1/kE
[
[Z − η]k

∗

+

]1/k∗

+ η − Cρ,kM
k∗ − 1

k∗

√
2

Nw
.

Using that k∗−1
k∗ = 1

k , taking the infimum over η on the right hand side and using duality

yields

inf
η
E[SNw(η)] ≥ sup

Q∈P
EQ[Z]− Cρ,k

M

k

√
2

Nw
.

To bound the second term in expression (B.3), we use concentration results for Lipschitz

functions. First, the function η 7→ SNw(η) is
√

1 + ρ-Lipschitz in η. To see this, note that

for 1 ≤ k? ≤ 2 and X ≥ 0, by Jensen’s inequality,

E[Xk?−1]

(E[Xk? ])1−1/k?
≤ E[X]k

?−1

(E[Xk? ])1−1/k?
≤ E[X]k

?−1

E[X]k?−1
= 1,

so S′Nw(η) ∈ [1−(1+ρ)
1
k , 1] and therefore SNw is (1+ρ)1/k-Lipschitz in η. Furthermore, the

mapping T : z 7→ (1 + ρ)
1
k ( 1

Nw

∑Nw
i=1 [zi − η]k

∗

+ )
1
k∗ for z ∈ RNw is convex and (1 + ρ)

1
k /
√
Nw-

Lipschitz. This is verified by the following:

∣∣T (z)− T (z′)
∣∣ ≤ (1 + ρ)1/k

∣∣∣∣∣
(

1

Nw

Nw∑
i=1

∣∣∣[zi − η]+ −
[
z′i − η

]
+

∣∣∣k∗ ) 1
k∗
∣∣∣∣∣

≤ (1 + ρ)1/k

Nw
1/k∗

∣∣∣∣∣
( Nw∑
i=1

∣∣zi − z′i∣∣k∗ ) 1
k∗
∣∣∣∣∣

≤ (1 + ρ)1/k

√
Nw

‖z − z′‖2,

where the first inequality is Minkowski’s inequality and the third inequality follows from

the fact that for any vector x ∈ Rn, we have ‖x‖p ≤ n
2−p
2p ‖x‖2 for p ∈ [1, 2], where these
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denote the usual vector norms. Thus, the mapping Z 7→ SNw(η) is (1+ρ)1/k/
√
Nw-Lipschitz

continuous with respect to the `2-norm on Z. Using Samson’s sub-Gaussian concentration

result for convex Lipschitz functions, we have

P (|SNw(η)− E[SNw(η)]| ≥ δ) ≤ 2 exp

(
− Nwδ

2

2C2
ρ,kM

2

)

for any fixed η ∈ R and any δ ≥ 0. Now, let N (U, ε) = {η1, . . . , ηN(U,ε)} be an ε cover of

the set U , which we may take to have size at most N(U, ε) ≤M(1 + cρ,k)
1
ε . Then we have

sup
η∈U
|SNw(η)− E[SNw(η)] ≤ max

i∈N (U,ε)
|SNw(ηi)− E[SNw(ηi)]|+ ε(1 + ρ)1/k.

Using the fact that E[maxi≤n |Xi|] ≤
√

2σ2 log(2n) for Xi all σ2-sub-Gaussian, we have

E
[

max
i∈N (U,ε)

|SNw(ηi)− E[SNw(ηi)]|
]
≤ Cρ,k

√
2
M2

Nw
log 2N(U, ε).

Taking ε = M(1 + cρ,k)/Nw gives that

E

[
sup
η∈U
|SNw(η)− E[SNw(η)]

]
≤
√

2MCρ,k

√
1

Nw
log(2Nw) +

Cρ,kM

Nw
.

Then, in total we have (using Cρ ≥ Cρ,k, k ≥ 2, and Nw ≥ 1),

E

[
sup

Q∈PNw
EQ[Z]

]
≥ sup

Q∈P
EQ[Z]− CρM

√
2√

Nw

(
1

k
+
√

log(2Nw) +
1√

2Nw

)

≥ sup
Q∈P

EQ[Z]− 4CρM

√
log(2Nw)

Nw
.

This gives the desired result of the lemma.
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B.2.4 Proof of Lemma B.2

Let L ≥ 0 satisfy L(w) = dQ(w)/dP (w), so that L is the likelihood ratio between Q and

P . Then we have

sup
Q:Dφ(Q||P )≤ρ

∫
g(w)dQ(w) = sup∫

φ(L)dP≤ρ,EP [L]=1

∫
g(w)L(w)dP (w)

= sup
L≥0

inf
λ≥0,η

{∫
g(w)L(w)dP (w)− λ

(∫
f(L(w))dP (w)− ρ

)
− η

(∫
L(w)dP (w)− 1

)}
= inf

λ≥0,η
sup
L≥0

{∫
g(w)L(w)dP (w)− λ

(∫
f(L(w))dP (w)− ρ

)
− η

(∫
L(w)dP (w)− 1

)}
,

where we have used that strong duality obtains because the problem is strictly feasible in

its non-linear constraints (take L ≡ 1), so that the extended Slater condition holds [185,

Theorem 8.6.1 and Problem 8.7]. Noting that L is simply a positive (but otherwise arbitrary)

function, we obtain

sup
Q:Dφ(Q||P )≤ρ

∫
g(w)dQ(w)

= inf
λ≥0,η

∫
sup
`≥0
{(g(w)− η)`− λφ(`)} dP (w) + λρ+ η

= inf
λ≥0,η

∫
λφ∗

(
g(w)− η

λ

)
dP (w) + η + ρλ.

Here we have used that φ∗(s) = supt≥0{st− φ(t)} is the conjugate of φ and that λ ≥ 0, so

that we may take divide and multiply by λ in the supremum calculation.

B.2.5 Proof of Lemma B.3

For a > 0, we have

inf
λ≥0

{
ap

pλp−1
+ λ

p− 1

p

}
= a,

(with λ = a attaining the infimum), and taking derivatives yields

ap

pλp−1
+ λ

p− 1

p
≥ ap

pλp−1
1

+ λ1
p− 1

p
+
p− 1

p

(
1− ap

λp1

)
(λ− λ1).

Using this in the moment expectation, by setting λn = p

√
1
n

∑n
i=1 Z

p
i , we have for any
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λ ≥ 0 that

E

[(
1

n

n∑
i=1

Zpi

) 1
p

]
= E

[∑n
i=1 Z

p
i

pnλp−1
n

+ λn
p− 1

p

]
≥ E

[∑n
i=1 Z

p
i

pnλp−1
+ λ

p− 1

p

]
+
p− 1

p
E
[(

1−
∑n

i=1 Z
p
i

nλp

)
(λn − λ)

]
.

Now we take λ = ‖Z‖p, and we apply the Cauchy-Schwarz inequality to obtain

E

[(
1

n

n∑
i=1

Zpi

) 1
p

]
≥ ‖Z‖p −

p− 1

p
E

(1−
1
n

∑n
i=1 Z

p
i

‖Z‖pp

)2
 1

2

E

(( 1

n

n∑
i=1

Zpi

) 1
p

− ‖Z‖p

)2
 1

2

= ‖Z‖p −
p− 1

p
√
n

√
Var(Zp/E[Zp])E

(( 1

n

n∑
i=1

Zpi

) 1
p

− E[Zp]
1
p

)2
 1

2

≥ ‖Z‖p −
p− 1

p
√
n

√
Var(Zp/E[Zp])E

[(
1

n

n∑
i=1

Zpi

) 2
p

+ E[Zp]
2
p

] 1
2

≥ ‖Z‖p −
p− 1

p

√
2

n

√
Var(Zp/E[Zp])‖Z‖2,

where the last inequality follows by the fact that the norm is non-decreasing in p.

In the case that we have the unifom bound ‖Z‖∞ ≤ C, we can get tighter guarantees.

To that end, we state a simple lemma.

Lemma B.4. For any random variable X ≥ 0 and a ∈ [1, 2], we have

E[Xak] ≤ E[Xk]2−aE[X2k]a−1

Proof For c ∈ [0, 1], 1/p+ 1/q = 1 and A ≥ 0, we have by Holder’s inequality,

E[A] = E[AcA1−c] ≤ E[Apc]1/pE[Aq(1−c)]1/q

Now take A := Xak, 1/p = 2− a, 1/q = a− 1, and c = 2
a − 1.

First, note that E[Z2p] ≤ CpE[Zp]. For 1 ≤ p ≤ 2, we can take a = 2/p in Lemma B.4, so

that we have

E[Z2] ≤ E[Zp]
2− 2

pE[Z2p]
2
p
−1 ≤ ‖Z‖ppC2−p.
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Now, we can plug these into the expression above (using VarZp ≤ E[Z2p] ≤ Cp‖Z‖pp),
yielding

E

[(
1

n

n∑
i=1

Zpi

) 1
p

]
≥ ‖Z‖p − C

p− 1

p

√
2

n

as desired.

B.2.6 Proof of Proposition 3.2

We utilize the following lemma for regret of online mirror descent.

Lemma B.5. The expected regret for online mirror descent with unbiased stochastic sub-

gradient γ(t) and stepsize η is

T∑
t=1

E
[
γ(t)T (w(t)− w?)

]
≤ log(d)

η
+
η

2
E

 T∑
t=1

d∑
j=1

wj(t)γj(t)
2

 (B.5)

See Appendix B.2.7 for the proof. Now we bound the right-hand term of the regret

bound (B.5) in our setting. For this we utilize the following:

E
[
γi(t)

2|w(t)
]

=
1

N2
w

L2
i (t)

w2
i (t)

E

(Nw∑
k=1

1 {Jk = i}

)2 ∣∣∣∣w(t)


=

1

N2
w

L2
i (t)

w2
i (t)

(
Nw(Nw − 1)wi(t)

2 +Nwwi(t)
)
,

where the latter fact is simply the second moment for the sum of Nw random variables
i.i.d.∼ Bernoulli(wi(t)). Then,

d∑
i=1

wi(t)E
[
γi(t)

2|w(t)
]

=

d∑
i=1

Li(t)
2

(
Nw − 1

Nw
wi(t) +

1

Nw

)

≤
d∑
i=1

(
Nw − 1

Nw
wi(t) +

1

Nw

)
=
Nw − 1

Nw
+

d

Nw

=: z.

Plugging in the prescribed η =

√
2 log(d)
zT into the bound (B.5) yields the result.
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B.2.7 Proof of Lemma B.5

We first show the more general regeret of online mirror descent with a Bregman divergence

and then specialize to the entropic regularization case. Let ψ(w) be a convex fuction and

ψ∗(θ) its Fenchel conjugate. Define the Bregman divergence Bψ(w,w′) = ψ(w) − ψ(w′) −
∇ψ(w′)T (w − w′). In the following we use the subscript ·t instead of (·)(t) for clarity. The

standard online mirror descent learner sets

wt = argmin
w

(
γTt w +

1

η
Bψ(w,wt)

)
.

Using optimality of wt+1 in the preceding equation, we have

γTt (wt − w∗) = γTt (wt+1 − w∗) + γTt (wt − wt+1)

≤ 1

η
(∇ψ(wt+1)−∇ψ(wt))

T (w∗ − wt+1)

+ γTt (wt − wt+1)

=
1

η
(Bψ(w∗, wt)−Bψ(w∗, wt+1)−Bψ(wt+1, wt))

+ γTt (wt − wt+1).

Summing this preceding display over iterations t yields

T∑
t=1

γTt (wt − w∗) ≤
1

η
Bψ(w∗, w1)

+
T∑
t=1

(
−1

η
Bψ(wt+1, wt) + γTt (wt − wt+1)

)

Now let ψ(w) =
∑

iwi logwi. Then, with w1 = 1/d, Bψ(w∗, w1) ≤ log(d). Now we bound

the second term with the following lemma.

Lemma B.6. Let ψ(x) =
∑

j xj log xj and x, y ∈ ∆ be defined by: yi = xi exp(−ηgi)∑
j xj exp(−ηgj)

where g ∈ Rd+ is non-negative. Then

−1

η
Bψ(y, x) + gT (x− y) ≤ η

2

d∑
i=1

g2
i xi.

See Appendix B.2.8 for the proof. Setting y = wt+1, x = wt, and g = γt in Lemma B.6
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yields
T∑
t=1

γTt (wt − w∗) ≤
log(d)

η
+
η

2

T∑
t=1

d∑
j=1

wj(t)γj(t)
2.

Taking expectations on both sides yields the result.

B.2.8 Proof of Lemma B.6

Note that Bψ(y, x) =
∑

i yi log yi
xi

. Substituting the values for x and y into this expression,

we have ∑
i

yi log
yi
xi

= −ηgT y −
∑
i

yi log

∑
j

xje
−ηgj


Now we use a Taylor expansion of the function g 7→ log

(∑
j xje

−ηgj
)

around the point

0. If we define the vector pi(g) = xie
−ηgi/

(∑
j xje

−ηgj
)

, then

log

∑
j

xje
−ηgj

 = log(1Tx)− ηp(0)T g+

η2

2
g>
(

diag(p(g̃))− p(g̃)p(g̃)>
)
g

where g̃ = λg for some λ ∈ [0, 1]. Noting that p(0) = x and 1Tx = 1T y = 1, we obtain

Bψ(y, x) = ηgT (x− y)− η2

2
g>
(

diag(p(g̃))− p(g̃)p(g̃)>
)
g,

whereby

−1

η
Bψ(y, x) + gT (x− y) ≤ η

2

d∑
i=1

g2
i pi(g̃). (B.6)

Lastly, we claim that the function

s(λ) =
d∑
i=1

g2
i

xie
−λgi∑

j xje
−λgj
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Figure B.1: Components of the 1/10 scale vehicle

is non-increasing on λ ∈ [0, 1]. Indeed, we have

s′(λ) =

(∑
i gixie

−λgi
) (∑

i g
2
i xie

−λgi
)

(
∑

i xie
−λgi)

2 −
∑

i g
3
i xie

−λgi∑
i xie

−λgi

=

∑
ij gig

2
jxixje

−λgi−λgj −
∑

ij g
3
i xixje

−λgi−λgj

(
∑

i xie
−λgi)

2

Using the Fenchel-Young inequality, we have ab ≤ 1
3 |a|

3 + 2
3 |b|

3/2 for any a, b so gig
2
j ≤

1
3g

3
i + 2

3g
3
j . This implies that the numerator in our expression for s

′
(λ) is non-positive. Thus,

s(λ) ≤ s(0) =
∑d

i=1 g
2
i xi which gives the result when combined with inequality (B.6).

B.3 Hardware

The major components of the vehicle used in experiments are shown in Figure B.1. The

chassis of the 1/10-scale vehicles used in experiments are based on a Traxxas Rally 1/10-

scale radio-controlled car with an Ackermann steering mechanism. An electronic speed

controller based on an open source design [289] controls the RPM of a brushless DC motor

and actuates a steering servo. A power distribution board manages the power delivery from

a lithium polymer (LiPo) battery to the onboard compute unit and sensors. The onboard

compute unit is a Nvidia Jetson Xavier, a system-on-a-chip that contains 8 ARM 64 bit

CPU cores and a 512 core GPU. The onboard sensor for localization is a planar LIDAR

that operates at 40Hz with a maximum range of 30 meters. The electronic speed controller

also provides odometry via the back EMF of the motor.
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Figure B.2: FormulaZero implementation on vehicle. Online each agent measures the world using
onboard sensors such as a planar LIDAR. Given the sensor measurement the vehicle performs op-
ponent prediction via the use of a masked autoregressive flow and simultaneously selects motion
planner goals using an inverse autoregressive flow. Given the set of goals each is evaluated within
our DRO framework, the best goal is chosen, and a new control command is applied to the vehicle.
Then, the process occurs again.

B.4 Vehicle Software Stack

This section gives a detailed overview of the software used onboard the vehicles. Figure B.2

gives a graphical overview.

B.4.1 Mapping

We create occupancy grid maps of tracks using Google Cartographer [128]. The map’s

primary use is as an efficient prior for vehicle localization algorithms. In addition, maps

serve as a representation of the static portion of the simulation environment describing

where the vehicle may drive and differentiating which (if any) portions of the LIDAR scan

have line-of-sight to other agents. A feature of our system useful to other researchers is that

any environment which can be mapped may be trivially added to the simulator described

in Appendix B.5.
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B.4.2 Localization

Due to the speeds at which the vehicles travel, localization must provide pose estimates

at a rate of at least 20 Hz. Thus, to localize the vehicle we use a particle filter [294]

that implements a ray-marching scheme on the GPU in order to efficiently simulate sensor

observations in parallel. We add a small modification which captures the covariance of the

pose estimate. We do not use external localization systems (e.g. motion capture cameras)

in any experiment.

B.4.3 Planning

The vehicle software uses a hierarchical planner [107] similar to that of Ferguson et al. [96].

At the top level the planner receives a map and waypoints representing the centerline of

the track; the goal is to traverse the track from start to finish. Unlike route planning in

road networks, there are no routing decisions to be made. In more complex instances of our

proposed environment, this module could be necessary for making strategic decisions such

as pit stops. The second key difference is the mid-level planner. Whereas Ferguson et al. [96]

uses a deterministic lattice of points, our vehicle draws samples from a neural autoregressive

flow. Each sample contains a goal pose and speed profile. Given this specification, the local

planner calculates a trajectory parameterized as a cubic spline, evaluates static and dynamic

costs of the proposed plan in belief space, and selects the lowest cost option.

Sampling behavior proposals

There are two advantages to using a neural autoregressive flow in our planning framework.

First, each agent in the population weights the individual components of its cost function

differently; the flow enables the goal generation mechanism to learn a distribution which

places more probability mass on the agent’s preferences. Second, as planning takes place

in the context of the other agent’s actions, the ego-agent’s beliefs can be updated by in-

verting the flow and estimating the likelihood of the other agent’s actions under a given

configuration of the cost function.

The goal-generation process utilizes an inverse autoregressive flow (IAF) [158]. The

IAF samples are drawn from a density conditioned on a 101-dimensional observation vector

composed of a subsampled LIDAR scan and current speed. Each sample is a 6 dimensional
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vector: ∆t, the perpendicular offset of the goal pose from the track’s centerline; ∆s, the arc-

length along the track’s centerline relative to the vehicle’s current pose; ∆θ, the difference

between the goal pose’s heading angle and the current heading angle; three velocity offsets

from the vehicle’s current velocity at three equidistant knot points along the trajectory.

The second benefit of using a generative model for sampling behavior proposals is the

ability to update an agent’s beliefs about the opponent’s policy type. As noted in Sec-

tion 3.4, masked [223] and inverse autoregressive flows (MAF and IAF respectively) have

complementary strengths. While sampling from a MAF is slow, density estimation using

this architecture is fast. Thus, we use a MAF network trained to mimic the samples pro-

duced by the IAF for this task. The architectures of each network are the same, and we

describe this architecture below.

The IAF and MAF networks used in this work have 5 MADE layers [223] each containing:

a masked linear mapping (R6 → R100), RELU layer, masked linear mapping (R100 → R100),

RELU layer, and a final masked linear layer (R100 → R12). Note that output of a MADE

layer includes both the transformed sample and the logarithm of the absolute value of the

determinant of the Jacobian of the transformation. For sampling, the latter is discarded,

and the transformed sample is passed to the next layer. In addition, the masking pattern is

sequential and held constant during both training and inference. This choice was made to

aid in debugging of experiments and to simplify communication during distributed training.

Each population member has a dedicated IAF model, which is trained iteratively ac-

cording to the AAdaPT algorithm described in Section 3.2 using the hyperparameters

given in Section 3.4. We initialize each IAF with a set of weights which approximate an

identity transformation for random pairs of samples from a normal distribution and simu-

lated observations. In addition each population member also has a MAF model, which is

trained using the same hyperparameters as the IAF but only after AAdaPT has finished.

Our code extends an existing library1 created by other authors; we add support for the

IAF architecture as well as generalize the network architecture to 3-dimensional tensors.

The latter extension enables sampling from multiple agents’ IAF models simultaneously

and efficiently.

1https://github.com/kamenbliznashki/normalizing_flows

https://github.com/kamenbliznashki/normalizing_flows
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Table B.1: The resolution and ranges of the trajectory generator look-up table

Index Resolution Min Max

∆x 0.1 m -1.0 m 10.0 m
∆y 0.1 m -8.0 m 8.0 m
∆θ π/32 rad −π/2 rad π/2 rad
κ0 0.2 rad/m -1.0 rad/m 1.0 rad/m

Figure B.3: Sample trajectories from the look-up table

Model Predictive Control

The goal of the trajectory generator is to compute kinematically and dynamically feasible

trajectories that take the vehicle from its current pose to a set of sampled poses from

the IAF. The trajectory generator combines approaches from [134, 205, 153, 196]. Each

trajectory is represented by a cubic spiral with five parameters p = [s, a, b, c, d] where s is

the arc length of the spiral, and (a, b, c, d) encode the curvature at equispaced knot points

along the trajectory. Powell’s method or gradient descent can be used to find the spline

parameters that (locally) minimize the sum of the Euclidean distance between the desired

endpoint pose and the forward simulated pose. Offline, a lookup table of solutions for a

dense grid of goal poses is precomputed, enabling fast trajectory generation online. Each

trajectory is associated with an index which selects the ∆x, ∆y, and the ∆θ of the goal

pose relative to the current pose (where positive x is ahead of the vehicle and postiive y is

to the left), and κ0, the initial curvature of the trajectory. The resolution and the range of

the table is listed in Table B.1. Figure B.3 shows a selection of trajectories. The point on

the left of the figure is the starting pose of the vehicle, and the collection of goal poses is

shown as the points on the right of the figure.
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Trajectory Cost Functions

Each of the generated trajectories is evaluated with the weighted sum of the following

cost functions. Note, in order to ensure safety, goals which would result in collision result

in infinite cost and are automatically rejected prior to computing the robust cost, which

operates only on finite-cost proposals.

1. Trajectory length: cal = s, where 1/s is the arc length of each trajectory. Short

and myopic trajectories are penalized.

2. Maximum absolute curvature: cmc = maxi{|κi|}, where κi are the curvatures at

each point on a trajectory. Large curvatures are penalized to preserve smoothness of

trajectories.

3. Mean absolute curvature: cac = 1
N

∑N
i=0 |κi|, the notation is the same as cmc and

the effect of this feature is similar, but less myopic.

4. Hysteresis loss: Measured between the previous chosen trajectory and each of the

sampled trajectories, chys = ||θ[n1,n2]
prev −θ[0,n2−n1]||22, where θprev is the array of heading

angles of each pose on the previous selected trajectory by the vehicle, θ is the array

of heading angles of each pose on the trajectory being evaluated, and the ranges

[n1, n2] and [0, n2 − n1] define contiguous portions of trajectories that are compared.

Trajectories dissimilar to the previously selected trajectory are penalized.

5. Lap progress: Measured along the track from the start to the end point of each

trajectory in the normal and tangential coordinate system, cp = 1
send−sstart , where

send is the corresponding position in the tangential coordinate along the track of the

end point of a trajectory, and sstart is that of the start point of a trajectory. Shorter

progress in distance is penalized.

6. Maximum acceleration: cma = maxi |∆vi∆ti
| where ∆v is the array of difference in

velocity between adjacent points on a trajectory, and ∆t is the array of corresponding

time intervals between adjacent points. High maximum acceleration is penalized.

7. Maximum absolute curvature change: Measured between adjacent points along

each trajectory, cdk = maxi |∆κi∆ti
|. High curvature changes are penalized.
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8. Maximum lateral acceleration: cla = maxi{|κ|iv2
i }, where κ and v are the ar-

rays of curvature and velocity of all points on a trajectory. High maximum lateral

accelerations are penalized.

9. Minimum speed: cms = 1
(mini{vi})+ . Low minimum speeds are penalized.

10. Minimum range: cmr = mini{ri}, where r is the array of range measurements

(distance to static obstacles) generated by the simulator. Smaller minimum range

is penalized, and trajectories with minimum ranges lower than a threshold are given

infinite cost and therefore discarded.

11. Cumulative inter-vehicle distance short:

cdyshort =

∞, if d(egoi, oppi) ≤ thresh∑Nshort
i=0 d(egoi, oppi), otherwise

Where the function d() returns the instantaneous minimum distance between the two

agents at point i, Nshort is a point that defines the shorter time horizon for a trajectory

of N points. Trajectories with infinite cost on the shorter time horizon are considered

infeasible and discarded.

12. Discounted cumulative inter-vehicle distance long:

cdylong =
∑Nlong

i=Nshort
0.9i−Nshort 1

d(egoi,oppi)
, where Nlong is a point that defines the longer

time horizon for a trajectory of N points. Note that Nshort < Nlong < N . Lower

minimum distances between agents on the longer time horizon are penalized.

13. Relative progress: Measured along the track between the sampled trajectories’

endpoints and the opponent’s selected trajectory’s endpoint, cdp = (sopp end − send)+,

where sopp end is the position along the track in tangential coordinates of the endpoint

of the opponent’s chosen trajectory. Lagging behind the opponent is penalized.

Path tracker

Once a trajectory has been selected it is given to the path-tracking module. The goal of the

path tracker is to compute a steering input which drives the vehicle to follow the desired

trajectory. Our implementation uses a simple and industry-standard geometrical tracking

method called pure pursuit [72, 270]. Due to the decoupling of the trajectory generation
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and tracking modules it is possible for the tracker to run at a much higher frequency than

the trajectory generator; this is essential for good performance.

B.4.4 Communication and system architecture

The ZeroMQ [130] messaging library is used to create interfaces between the FormulaZero

software stack and the underlying ROS nodes that control and actuate the vehicle test bed.

Unlike in the simulator, some aspects of the FormulaZero planning function operate non-

deterministicaly and asynchronously. In particular we use a sink node to collect observations

from ROS topics related to the various sensors on the vehicle in order to approximate the

step-function present in the Gym API. When a planning cycle is complete, the trajectory is

published back to ROS and tracked asynchronously using pure-pursuit as new pose estimates

become available. Because perception is not the primary focus of this project we simplify

the problem of detecting and tracking the other vehicle. In particular, each vehicle estimates

its current pose in the map obtained by its onboard particle filter, and this information is

communicated to the other vehicle via ZeroMQ over a local wireless network. Since tracking

and detection has been well studied in robotics, solutions which rely less on communication

could be explored by other future work.

B.5 Simulation Stack

The simulation stack includes a lightweight 2D physics engine with a dynamical vehicle

model. Then on top of the physics engine, a multi-agent simulator with an OpenAI Gym

[51] API is used to perform rollouts of the experiments.

B.5.1 Vehicle Dynamics

The single-track model in Althoff et al. [8] is chosen because it considers tire slip influences

on the slip angle, which enables accurate simulation at physical limits of the vehicle test

bed. It is also easily enables changes to the driving surface friction coefficient in simulation

which allows the simulator to model a variety of road surfaces.
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B.5.2 System Identification

Parameter identification was performed to derive the following vehicle parameters: mass,

center of mass, moment of inertia, surface friction coefficient, tire cornering stiffness, and

maximum acceleration/deceleration rates following the methods described in O’Kelly et al.

[219].

B.5.3 Distributed Architecture

Due to the nature of the AAdaPT algorithm, the rollouts in a single vertical step do not

need to be in sequence. The ZeroMQ messaging library is used to create a MapReduce

[73] pattern between the task distributor, result collector, and the workers. Each worker

receives the description of the configuration to be simualted, e.g. (x, θ). Then the workers

asynchronously perform simulations and send results to the collector.

B.5.4 Addressing the simulation/reality gap

As noted in Section 3.4 there are several differences between the observations in simulated

rollouts and reality. First, pose estimation errors are not present in the simulator. A

simple fix would be to add Gaussian white noise to the pose observations returned by the

simulator. We avoided this and other domain randomization techniques in order to preserve

the determinism of the simulator, but we will investigate its effect in further experiments.

Second, the LIDAR simulation does not account for material properties of the environment.

In particular, surfaces such as glass do not produce returns, causing subsets of the LIDAR

beams to be dropped. We hypothesize that simple data augmentation schemes which select

a random set of indices to drop from simulated LIDAR observations would improve the

robustness to such artifacts when the system is deployed on the real car; we are currently

investigating this hypothesis.

B.6 Experiments

Additional videos of simulation runs are available.2

2https://youtu.be/8q0lZssbEI4

https://youtu.be/8q0lZssbEI4
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B.6.1 Instantaneous time-to-collision (iTTC)

Let Ti(t) be the instantaneous time-to-collision between the ego vehicle and the i-th environ-

ment vehicle at time step t. The value Ti(t) can be defined in multiple ways (see e.g. Sontges

et al. [271]). Norden et al. [215] define it as the amount of time that would elapse before

the two vehicles’ bounding boxes intersect assuming that they travel at constant fixed ve-

locities from the snapshot at time t. Note that this definition of TTC is distinct from that

of Section C.1, and is a better indicator of danger for racing scenarios. Time-to-collision

captures directly whether or not the ego-vehicle was involved in a crash. If it is positive no

crash occurred, and if it is 0 or negative there was a collision.

B.6.2 Out-of-distribution agent strategies

In the following sections, we describe the human-created algorithms used in our out-of-

distribution analysis.

OOD1: RRT* with MPC-based Opponent Prediction

This approach exploits the fact that the two-car racing scenario is similar to driving alone on

the track with the only exception being during overtaking the opponent. This approach uses

a costmap-based RRT* [150] planning algorithm. The agent first uses the opponent’s current

pose and velocity in the world, and uses Model-Predictive Control to calculate an open loop

trajectory of N optimal inputs resulting in N+1 states based on a given cost function and

constraints. Specifically, the optimization problem is constrained by a linearized version

of the single track model described in Althoff et al. [8], and by the boundary values of

the inputs and states of the vehicle. The cost function that the optimization tries to

minimize consists of the trajectory length and input power requirement. The costmap used

by RRT* also incorporates this predicted trajectory of the opponent vehicle by inflating the

two-dimensional spline representing the prediction, and weighting the portion of the spline

closer to the ego vehicle higher. RRT* samples the two dimensional space that the vehicle

lies in. The path generated by RRT* is then tracked with the Pure Pursuit controller [72].

OOD2: RL-based Lane Switching

The second algorithm is based on a lane-switching planning strategy that uses an RL al-

gorithm to make lane switching decisions, and filters out unsafe decisions using a collision
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Figure B.4: Lanes that cover the track

indicator. First, as shown in B.4, different lanes going through numerous checkpoints on

the track are created to cover the entirety of the race track. Then a network is trained to

make lane switching decisions. The state of the RL problem consists of the sub-sampled

LIDAR scans of the ego vehicle; the pose (x, y, θ) of the opponent car with respect to the ego

vehicle; velocity (vx, vy) of the opponent vehicle with respect of the ego vehicle; projected

distance from the ego vehicle’s current position to all pre-defined paths. The reward of a

rollout is zero in the beginning. At each timestep, the timestep itself is subtracted from

the total reward. A rollout receives -100 as the reward when the ego agent collide with

the environment or the other agent. And finally, if both agents finish 2 laps, the difference

between lap times (positive if the ego agent wins) of the two agents are added to the re-

ward. Clipped Double Q-Learning [100] is used to estimate the Q function and make the

lane switching decisions. iTTC defined in Appendix B.6.1 is used as an indicator for future

collisions. If any decisions made by the RL network would result in a collision indicated by

the iTTC value, the safety function kicks in and makes the lane switching decision based

on the collision indicator. Finally, ego vehicle actuation is provided by the same Pure Pur-

suit controller [72] tracking the selected lane. We used an existing implementation3 of this

algorithm.

3https://github.com/pnorouzi/rl-path-racing

https://github.com/pnorouzi/rl-path-racing


162 APPENDIX B. CHAPTER 3 APPENDICES



Appendix C

Chapter 4 Appendices

C.1 Scenario specification

A scenario specification consists of a scenario description and outputs both pγ (4.1), the ac-

cident rate, and a dataset consisting of initial conditions and the minimum time to collision,

our continuous objective safety measure. Concretely, a scenario description includes

• a set of possible initial conditions, e.g. a range of velocities and poses for each agent

• a safety measure specification for the ego agent,

• a generative model of environment policies, an ego vehicle model,

• a world geometry model, e.g.a textured mesh of the static scene in which the scenario

is to take place.

Given the scenario description, the search module creates physics and rendering engine

worker instances, and Algorithm 4.1 then adaptively searches through many perturbations

of conditions in the scenario, which we call scenario realizations. A set of scenario realiza-

tions may be mapped to multiple physics, rendering, and agent instantiations, evaluated in

parallel, and reduced by a sink node which reports a measure of each scenarios performance

relative to the specification.

In our implementation the safety measure is minimum time-to-collision (TTC). TTC is

defined as the time it would take for two vehicles to intercept one another given that they

each maintain their current heading and velocity [292]. The TTC between the ego-vehicle

163
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and vehicle i is given by

TTCi(t) =
ri(t)

[−ṙi(t)]+
, (C.1)

where ri is the distance between the ego vehicle and vehicle i, and ṙi the time derivative of

this distance (which is simply computed by projecting the relative velocity of vehicle i onto

the vector between the vehicles’ poses). The operator [·]+ is defined as [x]+ := max(x, 0).

We define TTCi(t) =∞ for ṙi(t) ≥ 0.

Vehicles are described as oriented rectangles in the 2D plane. Since we are interested in

the time it would take for the ego-vehicle to intersect the polygonal boundary of another

vehicle on the road, we utilize a finite set of range and range measurements in order to

approximate the TTC metric. For a given configuration of vehicles, we computeN uniformly

spaced angles θ1, . . . , θN in the range [0, 2π] with respect to the ego vehicle’s orientation

and cast rays outward from the center of the ego vehicle. For each direction we compute

the distance which a ray could travel before intersecting one of the M other vehicles in the

environment. These form N range measurements s1, . . . , sN . Further, for each ray si, we

determine which vehicle (if any) that ray hit; projecting the relative velocity of this vehicle

with respect to ego vehicle gives the range-rate measurement ṡi. Finally, we approximate

the minimum TTC for a given simulation rollout X of length T discrete time steps by:

f(X) := min
t=0,...,T

(
min

i=1,...,N

si(t)

[−ṡi(t)]+

)
,

where we again define the approximate instantaneous TTC as ∞ for ṡi(t) ≥ 0. Note

that this measure can approximate the true TTC arbitrarily well via choice of N and the

discretization of time used by the simulator. Furthermore, note that our definition of TTC

is with respect to the center of the ego vehicle touching the boundary of another vehicle.

Crashing, on the other hand, is defined in our simulation as the intersection of boundaries

of two vehicles. Thus, TTC values we evaluate in our simulation are nonzero even during

crashes, since the center of the ego vehicle has not yet collided with the boundary of another

vehicle.

C.2 Network architectures

The MGAIL generator model we use takes the same inputs as that of Kuefler et al. [166]—the

dynamical states of the vehicle as well as virtual lidar beam reflections. Specifically, we take
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Figure C.1: Depiction of lidar sensor input used for GAIL models

as inputs: geometric parameters (vehicle length/width), dynamical states (vehicle speed,

lateral and angular offsets with respect to the center and heading of the lane, distance to

left and right lane boundaries, and local lane curvature), three indicators for collision, road

departure, and traveling in reverse, and lidar sensor observations (ranges and range-rates

of 20 lidar beams) as depicted in Figure C.1. The generator has two hidden layers of 200

and 100 neurons. The output consists of the mean and variance of normal distributions for

throttle and steering commands; we then sample from these distributions to draw a given

vehicle’s action. The discriminator shares the same size for hidden layers. The forward

model used to allow fully-differentiable training first encodes both the state and action

through a 150 neuron layer and also adds a GRU layer to the state encoding. A Hadamard

product of the results creates a joint embedding which is put through three hidden layers

each of 150 neurons. The output is a prediction of the next state.

The end-to-end highway autopilot model is a direct implementation of Bojarski et al. [43]

via the code found at the link https://github.com/sullychen/autopilot-tensorflow.

In our implementation of the vision-based policy, this highway autopilot model uses rendered

images to produce steering commands. Lidar inputs are used to generate throttle commands

using the same network as the non-vision policy.

C.3 Supplementary videos

We have provided some videos to augment our analysis (available at http://amansinha.

org/docs/OKellySiNaDuTe18_videos.zip):

• gail.mp4 provides an example of a trained GAIL model driving alongside data traces

from real human drivers [286].

https://github.com/sullychen/autopilot-tensorflow
http://amansinha.org/docs/OKellySiNaDuTe18_videos.zip
http://amansinha.org/docs/OKellySiNaDuTe18_videos.zip
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• Example videos from rollouts. The filenames start with “mttc =” to indicate the

minimum TTC that resulted between the ego and any other vehicle during the rollout.

Note that even crashes have nonzero values of TTC due to the definition we used for

TTC from the center of the ego vehicle (cf. Appendix C.1). The videos are all played

back at 2.5× real-time speed. The videos included in the supplement are:

– Crashes:

∗ mttc = 0.23− crash.mp4

∗ mttc = 0.30.mp4

∗ mttc = 0.42.mp4

∗ mttc = 0.56.mp4

– Non-crashes:

∗ mttc = 0.23− nocrash.mp4

∗ mttc = 0.79.mp4

∗ mttc = 1.43.mp4

∗ mttc = 2.01.mp4

∗ mttc = 3.05.mp4

∗ mttc = 6.00.mp4

∗ mttc = 6.01.mp4

∗ mttc = 10.11.mp4

These videos contain overhead, RGB, segmented, and depth views. We also include

higher-resolution RGB videos with the same base names as above but the extension

“ hires.mp4”.
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Chapter 5 Appendices

D.1 Warped Hamiltonian Monte Carlo

In this section, we provide a brief overview of Hamiltonian Monte Carlo (HMC) as well

as a specific rendition, split HMC [259], as it is used within our setting. Given “position”

variables x and “momentum” variables v, we define the Hamiltonian for a dynamical system

as H(x, v) which can usually be written as U(x)+K(v), where U(x) is the potential energy

and K(v) is the kinetic energy. For MCMC applications, U(x) = − log(ρ0(x)) and we take

v ∼ N (0, I) so that K(v) = ‖v‖2/2. In HMC, we start at state xi and sample vi ∼ N (0, I).

We then simulate the Hamiltonian, which is given by the partial differential equations:

ẋ =
∂H

∂v
, v̇ = −∂H

∂x
.

Of course, this must be done in discrete time for most Hamiltonians that are not perfectly

integrable. One notable exception is when x is Gaussian, in which case the dynamical system

corresponds to the evolution of a simple harmonic oscillator (i.e. a spring-mass system).

When done in discrete time, a symplectic integrator must be used to ensure high accuracy.

After performing some discrete steps of the system (resulting in the state (xf , vf )), we negate

the resulting momentum (to make the resulting proposal reversible), and then accept the

state (xf ,−vf ) using the standard Metropolis-Hastings criterion: min(1, exp(−H(xf ,−vf )+

H(xi, vi))) [121].

The standard symplectic integrator—the leap-frog integrator—can be derived using the

167
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Algorithm D.1 WarpedHMC

Input: Sample x, momentum v ∼ N (0, I), transform Vθ and its inverse Wθ, scale factor β, step
size ε
y ←Wθ(x)
v ← v − 0.5εβI{f(x) > γ}JVθ (y)∇f(x)
ŷ ← y cos(ε) + v sin(ε)
v̂ ← v cos(ε)− y sin(ε)
x̂← Vθ(ŷ)
v̂ ← v̂ − 0.5εβI{f(x̂) > γ}JVθ (ŷ)∇f(x̂)
v ← −v̂
x← x̂ with probability min(1, exp(−H(x̂, v̂) +H(x, v)))
Return x

following symmetric decomposition of the Hamiltonian (performing a symmetric decompo-

sition retains the reversibility of the dynamics): H(x, v) = U(x)/2 +K(v) +U(x)/2. Using

simple Euler integration for each term individually results in the following leap-frog step of

step-size ε:

v1/2 = vi −
ε

2

∂U(xi)

∂x

xf = xi + ε
∂K(v1/2)

∂v

vf = v1/2 −
ε

2

∂U(xf )

∂x
,

where each step simply simulates the individual Hamiltonian H1(x, v) = U(x)/2, H2(x, v) =

K(v), or H3(x, v) = U(x)/2 in sequence. As presented by Shahbaba et al. [259], this same

decomposition can be done in the presence of more complicated Hamiltonians. In particular,

consider the Hamiltonian H(x, v) = U1(x) + U0(x) + K(v). We can decompose this in the

following manner: H1(x, v) = U1(x)/2, H2(x, v) = U0(x) + K(v), and H3(x, v) = U1(x)/2.

We can apply Euler integration to the momentum v for the first and third Hamiltonians

and the standard leap-frog step to the second Hamiltonian (or even analytic integration if

possible). For this work, we have U0(x) = − log ρ0(x) and U1(x) = −β[γ − f(x)]−.

To account for warping, the modifications needed to the HMC steps above are simple.

When performing warping, we simply perform HMC for a Hamiltonian Ĥ(y, v) that is

defined with respect to the warped position variable y, where x = Vθ(y) for given parameters

θ. By construction of the normalizing flows, we assume y ∼ N (0, I), so that we can perform

the dynamics for Ĥ2(y, v) analytically. Furthermore, the Jacobian JVθ(y) is necessary for

performing the Euler integration of H1(y, v) and H3(y, v). This is summarized in Algorithm
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D.1. Note that we always perform the Metropolis-Hastings acceptance with respect to the

true Hamiltonian H, rather than the Hamiltonian Ĥ that assumes perfect training of the

normalizing flows.

D.2 Performance analysis

D.2.1 Proof of Proposition 5.1

We begin with showing the convergence of the number of iterations. To do this, we first

show almost sure convergence of βk in the limit N →∞. We note that in the optimization

problem (5.8), βk is a feasible point, yielding bk(β) = 1. Thus, βk+1 ≥ βk ≥ β0 := 0. Due

to this growth of βk with k, we have

Zk+1

Zk
= EPk

[
ρk+1(X)

ρk(X)

]
≤ 1,

Pk(f(X) ≤ γ) = EPk+1

[
Zk+1

Zk

ρk(X)

ρk+1(X)
I{f(X) ≤ γ)}

]
=
Zk+1

Zk
EPk+1

[I{f(X) ≤ γ)}]

≤ Pk+1(f(X) ≤ γ).

By the unfiorm convergence of empirical measures offered by the Glivenko-Cantelli Theorem,

the value ak → Pk(f(X) ≤ γ) almost surely. Then, the stop condition can be rewritten as

bk(β) ≥ ak/s → Pk(f(X) ≤ γ)/s ≥ pγ/s. Since bk(β) is monotonically decreasing in the

quantity β − βk, this constraint gives an upper bound for βk+1, and, as a result, all βk are

almost surely bounded from above and below. We denote this interval as B.

Now, we consider the convergence of the solutions to the finite N versions of prob-

lem (5.8), denoted βNk , to the “true” optimizers βk in the limit as N → ∞. Leaving

the dependence on βk implicit for the moment, we consider the random variable Y :=

g(X;β) := exp ((β − βk)[γ − f(X)]−). Then, since β ∈ B is bounded and g is continuous in

β, we can state the Glivenko-Cantelli convergence of the empirical measure uniformly over

B: supβ∈B ‖FN (Y ) − F (Y )‖∞ → 0 almost surely, where F is the cumulative distribution

function for Y . Note that the constraints in the problem (5.8) can be rewritten as expec-

tations of this random variable Y . Furthermore, the function g is strictly monotonic in β
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(and therefore invertible) for non-degenerate f(X) (i.e. f(x) > γ for some non-negligible

measure under P0). Thus, we have almost sure convergence of the argmin βNk+1 to βk+1.

Until now, we have taken dependence on βk implicitly. Now we make the dependence

explicit to show the final step of convergence. In particular, we can write βk+1 as a function

of βk (along with their empirical counterparts), For concreteness, we consider the following

decomposition for two iterations:

|βN2 (βN1 )− β2(β1)| ≤ |βN2 (βN1 )− β2(βN1 )|+ |β2(βN1 )− β2(β1)|.

We have already shown above that the first term on the right hand side vanishes almost

surely. By the same reasoning, we know that βN1 → β1 almost surely. The second term

also vanishes almost surely since βk+1(β) is a continuous mapping. This is due to the fact

that the constraint functions in problem (5.8) are continuous functions of both β and βk

along with the invertibility properties discussed previously. Then, we simply extend the

telescoping series above for any k and similarly show that all terms vanish almost surely.

This shows the almost sure convergence for all βk up to some K.

Now we must show that K is bounded and almost surely converges to a constant. To do

this we explore the effects of the optimization procedure. Assuming the stop condition (the

second constraint) does not activate, the first constraint in problem (5.8) has the effect of

making Zk+1/Zk = α (almost surely), which implies Pk+1(f(X) ≤ γ) = Pk(f(X) ≤ γ)/α.

In other words, we magnify the event of interest by a factor of 1/α. The second constraint

can be rewritten as Pk+1(f(X) ≤ γ) ≤ s. Thus, we magnify the probability of the region

of interest by factors of α unless doing so would increase the probability to greater than

s. In that case, we conclude with setting the probability to s (since Pβ(f(X) ≤ γ) is

monotonically increasing in β). In this way, we have 0 iterations for pγ ∈ [s, 1], 1 iteration

for pγ ∈ [αs, s), 2 iterations for pγ ∈ [α2s, αs), and so on. Then, the total number of

iterations is (almost surely) blog(pγ)/ log(α)c+ I{pγ/αblog(pγ)/ log(α)c < s}.

Now we move to the relative mean-square error of p̂γ . We employ the delta method,

whereby, for large N , this is equivalent to Var(log(p̂γ)) (up to terms o(1/N)). For notational
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convenience, we decompose Êk into its numerator and denominator:

Ak(X) := ρBk (X)/ρk−1(X), Âk :=
1

N

N∑
i=1

Ak(x
k−1
i )

Bk(X) := ρBk (X)/ρk(X), B̂k :=
1

N

N∑
i=1

Bk(x
k
i ).

By construction (and assumption of large T ), Algorithm 5.1 has a Markov property that

each iteration’s samples xki are independent of the the previous iterations’ samples xk−1
i

given βk. For shorthand, let β0:k denote all β0, . . . , βk. Conditioning on β0:k, we have

Var(Ak) = Var (E[Ak|β0:k]) + E [Var (Ak|β0:k)] .

Since β0:k approaches constants almost surely as N → ∞, the first term vanishes and the

second term is the expectation of a constant. In particular, the second term is as follows:

Var (Ak|β0:k) = E
[
A2
k|β0:k

]
− (E [Ak|β0:k])

2

= EPk−1

[
ρk(X)

ρk−1(X)

]
−

(
EPk−1

[√
ρk(X)

ρk−1(X)

])2

=
Zk
Zk−1

−
(
ZBk
Zk−1

)2

.

Similarly, Var(Bk|β0:k) = Zk−1/Zk − (ZBk /Zk)
2. Next we look at the covariance terms:

Cov(Ak−1, Ak) = Cov (E[Ak−1|β0:k],E[Ak|β0:k]) + E [Cov (Ak−1, Ak|β0:k)] .

Again, the first term vanishes since β0:k approach constants as N → ∞. By construction,

the second term is also 0 since the quantities are conditionally independent. Similarly,

Cov(Bk−1, Bk) = 0 and Cov(Ai, Bj) = 0 for j 6= i − 1. However, there is a nonzero
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covariance for the quantities that depend on the same distribution:

Cov (Bk, Ak+1|β0:k+1) = E [BkAk+1|β0:k+1]− E [Bk|β0:k+1]E [Ak+1|β0:k+1]

= EPk

[√
ρk−1(X)ρk+1(X)

ρk(X)

]
−
ZBk+1

Zk

ZBk
Zk

=
ZCk
Zk
−
ZBk+1

Zk

ZBk
Zk

.

By the large T assumption, the samples xki and xkj are independent for all i 6= j given βk.

Then we have

Var(Âk|β0:k) = Var(Ak|β0:k)/N, Var(B̂k|β0:k) = Var(Bk|β0:k)/N,

Cov(B̂k, Âk+1|β0:k+1) = Cov(Bk, Ak+1|β0:k+1)/N.

The last term in p̂γ , 1
N

∑N
i=1

ρ∞(xKi )

ρK(xKi )
, reduces to a simple Monte Carlo estimate since ρ∞(X)

ρK(X) =

I{f(X) ≤ γ}. Furthermore, this quantity is independent of all other quantities given β0:K

and, as noted above, approaches s almost surely as N →∞.

Putting this all together, the delta method gives (as N → ∞ so that β0:K approach

constants almost surely),

Var(log(p̂γ))→
K∑
k=1

(
Var(Âk)

(ZBk /Zk−1)2
+

Var(B̂k)

(ZBk /Zk)
2

)
− 2

K−1∑
k=1

Cov(B̂k, Âk+1)

ZBk+1Z
B
k /Z

2
k

+
1− s
sN

=
2

N

K∑
k=1

(
Zk−1Zk
(ZBk )2

− 1

)
− 2

N

K−1∑
k=1

(
ZCk Zk

ZBk Z
B
k+1

− 1

)
+

1− s
sN

+ o

(
1

N

)
.

The Bhattacharrya coefficient can be written as

G(Pk−1, Pk) =

∫
X

√
ρk−1(x)

Zk−1

ρk(x)

Zk
dx =

ZBk√
Zk−1Zk

.

Furthermore, we have

G(Pk−1, Pk+1)

G(Pk−1, Pk)G(Pk, Pk+1)
=

ZCk√
Zk−1Zk+1

√
Zk−1Zk

ZBk

√
ZkZk+1

ZBk+1

=
ZCk Zk

ZBk Z
B
k+1

,
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yielding this final result

Var(log(p̂γ))→
2

N

K∑
k=1

(
1

G(Pk−1, Pk)2
− 1

)
−

2

N

K−1∑
k=1

(
G(Pk−1, Pk+1)

G(Pk−1, Pk)G(Pk, Pk+1)
− 1

)
+

1− s
sN

+ o

(
1

N

)
. (D.1)

We remark that a special case of this formula is for K = 1 and s = 1 (so only the first term

survives), which is the relative mean-square error for a single bridge-sampling estimate Êk.

Now, since G(P,Q) ≥ 0, the terms in the second sum are ≥ −1 so that the second sum

is ≤ 2(K − 1)/N . Furthermore, since s ≥ 1/3, the last term is also ≤ 2/N . Thus, if we

have 1
G(Pk−1,Pk)2

≤ D (with D ≥ 1), then the asymptotic relative mean-square error (D.1)

is ≤ 2KD/N (up to terms o
(

1
N

)
).

When performing warping, we follow the exact same pattern as the above results, condi-

tioning on both β0:k and W0:k, where W0 is defined as the identity mapping. We follow the

same almost-sure convergence proof for Wk as above for βk, which requires compactness of

θ ∈ Θ, continuity of W with respect to θ and x, and that we actually achieve the minimum

in problem (5.6). Although the first two conditions are immediate in most applications, the

last condition can be difficult to satisfy for deep neural networks due to the nonconvexity

of the optimization problem.

D.3 Experimental setups

D.3.1 Hyperparameters

The number of samples N affects the absolute performance of all of the methods tested,

but not their relative performance with respect to each other. For all experiments, we use

N = 1000 for B and NB to have adequate absolute performance given our computational

budget (see below for the computing architecture used). Other hyperparameters were tuned

on the synthetic problem and fixed for the rest of the experiments (with the exception of

the MAF architecture for the rocket experiments). The hyperparameters were chosen as

follows.

When performing Hamiltonian dynamics for a Gaussian variable, a time step of 2π

results in no motion and time step of π results in a mode reversal, where both the velocity

and position are negated. The π time step is in this sense the farthest exploration that can

occur in phase space (which can be intuitively understood by recognizing that the phase

diagram of a simple spring-mass system is a unit circle). Thus, we considered T = 4, 8, 12,
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and 16 with time steps π/T . We found that T = 8 provided reasonable exploration (as

measured by autocorrelations and by the bias of the final estimator p̂γ) and higher values

of T did not provide much more benefit. For B, we allowed 2 more steps T = 10 to keep the

computational cost the same across B and NB. Similarly, for AMS, we set T = 10. We also

performed tuning online for the time step to keep the accepatance ratio between 0.4 and

0.8. This was done by setting the time step to sin−1(min(1, sin(t) exp((p − C)/2)), where

t is the current time step, p is the running acceptance probability for a single chain and

C = 0.4 if p < 0.4 or 0.8 if p > 0.8. This was done after every T HMC steps.

For the step size of the bridge, we considered α ∈ {0.01, 0.1, 0.3, 0.5}. Smaller α results

in fewer iterations and better computational efficiency. However, we found that very small

α made MAF training difficult (see below for the MAF architectures used). We settled on

α = 0.3, which provided reasonable computational efficiency (no more than 11 iterations

for the synthetic problem) as well as stable MAF training. For AMS, we followed the

hyperparameter settings of Webb et al. [298]. Namely, we chose a culling fraction of αAMS =

10%, where αAMS sets the fraction of particles that are removed and rejuvenated at each

iteration [298].

The MAF architectures for the synthetic, MountainCar, and CarRacing experiments

were set at 5 MADE units, each with 1 hidden layer of 100 neurons. Because the rocket

search space is very high dimensional, we decreased the MAF size for computational effi-

ciency: we set it at 2 MADE units, each with hidden size 400 units. We used 100 epochs

for training, a batch size of 100, a learning rate of 0.01 and an exponential learning-rate

decay with parameter 0.95.

Given the above parameters, the number of simulations for each experiment varies

based on the final probability in question pγ (smaller values result in more simulations

due to having a higher number of iterations K). We had runs of 111000, 101000, 91000,

71000, 91000, and 101000 simulations respectively for the synthetic, MountainCar, Rocket1,

Rocket2, AttentionAgentRacer, and WorldModelRacer environments. We used these val-

ues as well as the ground truth pγ values to determine the number of particles allowed

for AMS, NAMS = 920, 910, 820, 780, 820, 910 respectively, as AMS has a total cost of

NAMS(1 + αAMSTKAMS), where KAMS ≈ log(pγ)/ log(1− αAMS).

For the surrogate Gaussian process regression model for CarRacing, we retrained the

model on the most recent N simulations after every NT simulations (e.g. after every T

HMC iterations). This made the amortized cost of training the surrogate model negligible
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compared to performing the simulations themselves. We used a Matern kernel with param-

eter ν = 2.5. We optimized the kernel hyperparameters using an L-BFGS quasi-Newton

solver.

Computing infrastructure and parallel computation Experiments were carried out

on commodity CPU cloud instances, each with 96 Intel Xeon cores @ 2.00 GHz and 85

GB of RAM. AMS, B, and NB are all designed to work in a Map-Reduce paradigm, where

a central server orchestrates many worker jobs followed by synchronization step. AMS

requires more iterations and fewer parallel worker threads per iteration than B and NB. In

particular, whereas B and NB perform N parallel jobs per iteration, AMS only performs

αAMSNAMS parallel jobs per iteration. Thus, B and NB take advantage of massive scale

and parallelism much more than AMS.

D.3.2 Environment details

MountainCar

The MountainCar environment considers a simple car driving on a mountain road. The

car can sense horizontal distance s as well as its velocity v, and may send control inputs

u (the amount of power applied in either the forward or backward direction). The height

of the road is given by: h(s) = 0.45 sin(3s) + 0.55. The speed of the car, v, is a function

of s and u only. Thus, the discrete time dynamics are: sk+1 = sk + vk+1 and vk+1 =

vk + 0.0015uk − 0.0025 cos(3sk). For a given episode the agent operating the car receives a

reward of −0.1u2
k for each control input and 100 for reaching the goal state.

In this experiment we explore the effect of domain shift on a formally verified neural

network. We utilize the neural network designed by Ivanov et al. [141]; it contains two

hidden layers, each of 16 neurons, for a total of 337 parameters. For our experiments we

use the trained network parameters available at: https://github.com/Verisig/verisig.

Ivanov et al. [141] describe a layer-by-layer approach to verification which over-approximates

the reachable set of the combined dynamics of the environment and the neural network.

An encoding of this system (network and environment) is developed for the tool Flow∗ [65]

which constructs the (overapproximate) reachable set via a Taylor approximation of the

combined dynamics.

The MountainCar environment is considered solved if a policy achieves an average re-

ward of 90 over 100 trials. The authors instead seek to prove that the policy will achieve a

https://github.com/Verisig/verisig
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reward of at least 90 for any initial condition. By overapproximating the reachable states

of the system, they show that the car always receives a total reward greater than 90 and

achieves the goal in less than 115 steps for a subset of the intial conditions p̂0 ∈ [−0.59,−0.4].

Rocket design

The system under test is a rocket spacecraft with dynamics mp̈ = f −mge3 , where m >

0 is the mass, p(t) ∈ R3 is the position, and e3 is the unit vector in the z-direction.

While it is possible to synthesize optimal trajectories for an idealized model of the system,

significant factors such as wind and engine performance (best modeled as random variables)

are unaccounted for [38]. Without feedback control, even small uncorrected tracking errors

result in loss of the vehicle. In the case of disturbances the authors suggest two approaches:

(1) a feedback control law which tracks the optimal trajectory (2) receding horizon model

predictive control. The system we consider tracks an optimal trajectory using a feedback

control law. Namely, the optimal trajectory is given by the minimum fuel solution to a

linearized mode of the dynamics. Specifically, we consider the thrust force discretized in

time with a zero-order hold, such that fk applied for time t ∈ [(k − 1)h, kh] for a time step

h = 0.2. Then, the reference thrust policy solves the following convex optimization problem

minimize

K∑
i=1

‖fk‖2

such that pK = vK = 0, ‖fk‖ ≤ Fmax,

vk+1 − vk =
h

m
fk − hge3,

pk+1 − pk =
h

2
(vk + vk+1) ,

(p3)k ≥ 0.5‖((p1)k, (p2)k)‖2,

where the last constraint is a minimum glide slope and Fmax is a maximum thrust value for

the nominal thrusters. This results in the thrust profile f?. The booster thrusters correct

for disturbances along the flight. The disturbances at every point in time follow a mixture of

Gaussians. Namely, we consider 3 wind gust directions, w1 = (1, 1, 1)/
√

(3), w2 = (0, 1, 0),

and w3 = (1, 0, 0). For every second in time, the wind follows a mixture:

W ∼ N (0, I) + w1B + w2B̂ + (1− B̂)w3,
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where B ∼ Bernoulli(1/3) and B̂ ∼ Bernoulli(1/2). This results in 5 random variables

for each second, or a total of 100 random variables since we have a 20 second simulation.

The wind intensity experienced by the rocket is a linear function of height (implying a

simplistic laminar boundary layer): fw = CWp3 for a constant C. Finally, the rocket has a

proportional feedback control law for the booster thrusters to the errors in both the position

pk and velocity vk:

ffeedback,k = clip-by-norm(f?k −Kp(pk − p?k)−Kv(vk − v?k)).

The maximum norm for clip-by-norm is aFmax, where a = 1.15 for Rocket1 and a = 1.1 for

Rocket2, indicating that the boosters are capable of providing 15% or 10% of the thrust of

the main engine.

Car Racing

We compare the failure rate of agents solving the car-racing task utilizing the two distinct

approaches ([118] and [279]). The car racing task differs from the other experiments due

to the inclusion of a (simple) renderer in the system dynamics. At each the step the agent

recieves a reward of −0.1 + Inewtile(1000/N)− Iofftrack(100) where N is the total number

of tiles visited in the track. The environment is considered solved if the agent returns an

average reward of 900 over 100 trials. The search space P0 is the inherent randomness

involved with generating a track. The track is generated by selecting 12 checkpoints in

polar coordinates, each with radian value uniformly in the interval [2πi/12, 2π(i + 1)/12)

for i = 0, . . . 11, and with radius uniformly in the interval [R/3, R], for a given constant

value R. This results in 24 parameters in the search space. The policies used for testing

are described below:

AttentionAgent Tang et al. [279] utilize a simple self-attention module to select patches

from a 96x96 pixel observation. First the input image is normalized then a sliding window

approach is used to extractN patches of sizeM×M×3 which are flattened and arranged into

a matrix of size 3M2×N . The self-attention module is used to compute the attention matrix

A and importance vector (summation of each column of A). A feature extraction operation

is applied to the top K elements of the sorted importance vector and the selected features

are input to a neural network controller. Both the attention module and the controller
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are trained together via CMA-ES. Together, the two modules contain approximately 4000

learnable parameters.

WorldModel The agent of Ha and Schmidhuber [118] first maps a top-down image of the

car on track via a variational autoencoder to a latent vector z. Given z, the world model M

utilizes a recurrent-mixture density network [37] to model the distribution of future possible

states P (zt+1 | at, zt, ht). Note that ht, the hidden state of the RNN. Finally, a simple linear

controller C maps the concatenation of zt and ht to the action, at.
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