
Certifying Some Distributional Robustness
with Principled Adversarial Training

Aman Sinha*, Hongseok Namkoong*, & John Duchi

Stanford University

ICLR 2018



Motivation

[Goodfellow et al. 2015]

[Athalye et al. 2017]

We want to increase the robustness of machine-learned systems



Current Approaches

• Adversarial training heuristics: Fast but no theoretical guarantees of
robustness

– Goodfellow et al. 2015, Kurakin et al. 2016, Papernot et al. 2016, He
et al. 2017, Carlini & Wagner 2017, Tramer et al. 2017, Madry et al.
2018, etc.

• Formal verification: Rigorous guarantees but very slow

– Huang et al. 2017, Katz et al. 2017, Kolter & Wong 2017, Tjeng &
Tedrake 2017, Raghunathan et al. 2018

Our goal: balance efficiency with robustness guarantees



Our Work: Principled adversarial training

• Setup: model/network weights θ ∈ Θ, feature vector X, label Y , and
loss function `(θ;X,Y )

Overall idea: replace `(θ;X,Y ) with robust surrogate φγ(θ;X,Y )

• For moderate levels of desired robustness and smooth losses `:

– Provably fast convergence, 5-10x as fast as ERM

– Statistical guarantees for performance on
(perturbations to) the test set



Distributionally robust optimization (DRO)

• Goal: robustness to ρ-perturbations in a Wasserstein ball

– c(x, x0): “cost” to perturb x0 to x (e.g. ‖x− x0‖2)

– Wasserstein distance
Dc(Q,P ) := minM :MX=Q,MX′=P EM [‖X −X ′‖2]

• Generally intractable for arbitrary ρ

[Esfahani & Kuhn 2015; Shafieezadeh-Abadeh et al. 2015; Blanchet et al. 2016, Lee & Raginsky 2017]
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Distributionally robust optimization (DRO)

minimize
θ∈Θ

max
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Distributionally robust optimization (DRO)

• Lagrangian relaxation and its dual formulation (more robustness ↔
larger ρ ↔ smaller γ)

minimize
θ∈Θ

max
Q

{
EQ[`(θ;X,Y )]− γDc(Q,P0)︸ ︷︷ ︸

penalty

}
=

minimize
θ∈Θ

EP0 [φγ(θ;X,Y )]

where φγ(θ;x, y) := max
x′∈X

{
`(θ;x′, y)− γ‖x′ − x‖2︸ ︷︷ ︸

penalty

}

• Compare to ERM: minimizeθ∈Θ EP0 [`(θ;X,Y )]

[Blanchet et al. 2016]



Solving the optimization problem

φγ(θ;x0, y0) := max
x∈X

{
`(θ;x, y0)− γ‖x− x0‖2

}
Key insight: (x, y) 7→ `(θ;x, y)− γ‖x− x0‖2 is strongly concave for smooth `
and large enough γ

• Curvature in ‖ · ‖2 dwarfs out non-concavity of `(θ; ·)
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Solving the optimization problem

φγ(θ;x0, y0) := max
x∈X

{
`(θ;x, y0)− γ‖x− x0‖2

}
Key insight: (x, y) 7→ `(θ;x, y)− γ‖x− x0‖2 is strongly concave for smooth `
and large enough γ

• Curvature in ‖ · ‖2 dwarfs out non-concavity of `(θ; ·)

Deep nets with smooth activations (ELUs, sigmoid, etc.) are smooth



Optimization guarantees

Algorithm: SGD for minθ EP0 [φγ(θ;X,Y )]

• Sample (xt, yt) ∼ P0

• Compute adversarial example:
(approximate) maximizer x̂t of `(θt;x, yt)− γ‖x− xt‖2

• θt+1 ← θt − α∇θ`(θt; x̂t, yt)

• So long as ∇x`(θ; ·) is Lxx-Lipschitz and γ > Lxx, we can compute
x̂t in 10 ∼ 20 gradient ascent steps

• Theorem: converges at standard nonconvex-SGD rate



Certificate of robustness

• Algorithm generalizes: we learn to prevent attacks on the test set

• θWRM = output of Algorithm, Compn = size of Θ, C =
problem-dependent constant, P̂n = empirical training distribution

Theorem (Robustness Certificate)

With high probability, for any ρ ≥ 0

max
Q:Dc(Q,P0)≤ρ

EQ[`(θWRM;X,Y )] ≤ γρ+EP̂n
[φγ(θWRM;X,Y )]+C

Compn√
n



Certificate of robustness

• Bounds can be large in practical applications due to
dimension/covering-number dependence

• Alternative bound for any empirical test set P̂test and test examples
(xtest
i , ytest

i )

1

ntest

n∑
i=1

max
x:‖x−xtesti ‖2≤ρ

{
`(θ;x, ytest

i )
}
≤ max

Q:Dc(Q,P̂test)≤ρ
EP [`(θ;X,Y )]

≤ γρ+ E
P̂test

[φγ(θ;X,Y )]



MNIST classification

• Compare our method (WRM) with fast-gradient method (FGM),
iterated FGM (IFGM), and projected gradient method (PGM)

• All models trained with 2-norm adversary
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[Goodfellow et al. 2015, Kurakin et al. 2016, Madry et al. 2017]



MNIST classification

• All models except WRM trained with ∞-norm adversary

0 0.05 0.1 0.15 0.2 0.25

10
-2

10
-1

10
0

Test error vs. εadv for
PGM ‖ · ‖2 attack

0 0.05 0.1 0.15 0.2

10
-2

10
-1

10
0

Test error vs. εadv for
PGM ‖ · ‖∞ attack



When the model misclassifies

• Minimum perturbation forcing WRM to misclassify is perceptible



Conclusions & Future Work

• Optimization and robustness guarantees for small adversarial budgets
(imperceptible perturbations)

• More empirical comparisons needed on larger models/datasets

• Statistical guarantees can be loose due to covering-number arguments

– Recent developments: Bartlett et al. 2017, Dziugaite & Roy 2017,
Neyshabur et al. 2017

Poster 7, Wednesday 11am-1pm
Code: https://github.com/duchi-lab/certifiable-distributional-robustness


