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Motivation

“panda” “gibbon"

57.7% confidence 99.3% confidence

[Goodfellow et al. 2015]

Fooling Image
Recognition

[Athalye et al. 2017]

We want to increase the robustness of machine-learned systems



Current Approaches

o Adversarial training heuristics: Fast but no theoretical guarantees of
robustness
— Goodfellow et al. 2015, Kurakin et al. 2016, Papernot et al. 2016, He
et al. 2017, Carlini & Wagner 2017, Tramer et al. 2017, Madry et al.
2018, etc.

e Formal verification: Rigorous guarantees but very slow

— Huang et al. 2017, Katz et al. 2017, Kolter & Wong 2017, Tjeng &
Tedrake 2017, Raghunathan et al. 2018

Our goal: balance efficiency with robustness guarantees



Our Work: Principled adversarial training

e Setup: model/network weights 6 € O, feature vector X, label Y, and
loss function ¢(0; X,Y")

Overall idea: replace £(6; X,Y') with robust surrogate ¢, (6; X,Y)

e For moderate levels of desired robustness and smooth losses ¢:
— Provably fast convergence, 5-10x as fast as ERM

— Statistical guarantees for performance on
(perturbations to) the test set



Distributionally robust optimization (DRO)

e Goal: robustness to p-perturbations in a Wasserstein ball
— ¢z, x0): “cost” to perturb g to x (e.g. ||z — o)

— Woasserstein distance
De(Q, P) := minpgarg =@My =p Ex[|| X — X'[1?]

e Generally intractable for arbitrary p

™

[Esfahani & Kuhn 2015; Shafieezadeh-Abadeh et al. 2015; Blanchet et al. 2016, Lee & Raginsky 2017]
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Distributionally robust optimization (DRO)

Eolt(6; X,Y)] : De(Q, Py) <
minimize - max {Eq[(0; X,Y)] : De(Q, o) < p}

e Goal: robustness to p-perturbations in a Wasserstein ball
— ¢z, x0): “cost” to perturb g to x (e.g. ||z — o)

— Woasserstein distance
De(Q, P) := minpgarg =@, vy =p Ex[|| X — X'[1?]

e Generally intractable for arbitrary p
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[Esfahani & Kuhn 2015; Shafieezadeh-Abadeh et al. 2015; Blanchet et al. 2016, Lee & Raginsky 2017]



Distributionally robust optimization (DRO)

e Lagrangian relaxation and its dual formulation (more robustness <>
larger p <> smaller )

minimize max {EQ[K(H;X, Y)] —vD.(Q, Po) } =

penalty

minimize Ep, [¢,(0; X,Y)]

0cO
where 6, (6;2,) i= max {€(8:',y) — yll2’ - al]® }
z'eX —_——
penalty

e Compare to ERM: minimizepce Ep,[¢(6; X,Y)]

[Blanchet et al. 2016]



Solving the optimization problem

6+ (0; w0, yo) := max {(0; 2, y0) — Y|l — zol*}

Key insight: (x,y) — £(0;x,y) — ||z — x0]|? is strongly concave for smooth ¢
and large enough ~
[

e Curvature in || -

[—=t@)

dwarfs out non-concavity of £(6;-)

Zo
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Solving the optimization problem

6+ (0; w0, yo) := max {(0; 2, y0) — Y|l — zol*}

Key insight: (z,y) + £(0;x,y) — ||z — z0||? is strongly concave for smooth ¢
and large enough ~

e Curvature in || - [|?

dwarfs out non-concavity of ¢(6;-)

Deep nets with smooth activations (ELUs, sigmoid, etc.) are smooth



Optimization guarantees

Algorithm: SGD for ming Ep,[¢~(6; X,Y)]
e Sample (z¢,4!) ~ Py

e Compute adversarial example:
(approximate) maximizer &' of £(0%; z,y') — ||z — t||?

o 0L 0t — aVyl(0% 7, yh)

e So long as V,£(0;-) is Ly,-Lipschitz and v > L,,, we can compute
Z! in 10 ~ 20 gradient ascent steps

e Theorem: converges at standard nonconvex-SGD rate



Certificate of robustness

e Algorithm generalizes: we learn to prevent attacks on the test set

o Owrm = output of Algorithm, Comp,, = size of O, C' =
problem-dependent constant, P,, = empirical training distribution

Theorem (Robustness Certificate)
With high probability, for any p > 0

Com
max _ Eq[f(Bwrm; X, Y)] < vo+Ep [¢(Owrni; X, Y)]+C ﬁ””

Q:Dc(Q,Po)<p




Certificate of robustness
e Bounds can be large in practical applications due to
dimension/covering-number dependence

e Alternative bound for any empirical test set ﬁtest and test examples

(.%EeSt , yztest )

n

1 €es
| max {€(6;2,y{*")} < max Ep[t(0; X,Y)]
nteSt =1 CEH:U—.’EZ ” SP Q3DC(Q7Ptest)§P

<y +Eg_ [04(6; X,Y)]



MNIST classification

e Compare our method (WRM) with fast-gradient method (FGM),
iterated FGM (IFGM), and projected gradient method (PGM)

e All models trained with 2-norm adversary
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PGM || - ||2 attack PGM || - || attack

[Goodfellow et al. 2015, Kurakin et al. 2016, Madry et al. 2017]



MNIST classification

o All models except WRM trained with co-norm adversary
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When the model misclassifies

e Minimum perturbation forcing WRM to misclassify is perceptible

Original

IFGM




Conclusions & Future Work

e Optimization and robustness guarantees for small adversarial budgets
(imperceptible perturbations)

e More empirical comparisons needed on larger models/datasets

o Statistical guarantees can be loose due to covering-number arguments

— Recent developments: Bartlett et al. 2017, Dziugaite & Roy 2017,
Neyshabur et al. 2017
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Code: https://github.com/duchi-lab/certifiable-distributional-robustness



