Scalable End-to-End Autonomous Vehicle
Testing via Rare-event Simulation

Matthew O’Kelly* Aman Sinha* Hongseok Namkoong*
University of Pennsylvania Stanford University Stanford University
mokelly@seas.upenn.edu amans@stanford.edu hnamk@stanford.edu

John Duchi Russ Tedrake
Stanford University Massachusetts Institute of Technology
jduchi@stanford.edu russt@mit.edu
Abstract

While recent developments in autonomous vehicle (AV) technology highlight
substantial progress, we lack tools for rigorous and scalable testing. Real-world
testing, the de facto evaluation environment, places the public in danger, and, due
to the rare nature of accidents, will require billions of miles in order to statistically
validate performance claims. We implement a simulation framework that can test
an entire modern autonomous driving system, including, in particular, systems
that employ deep-learning perception and control algorithms. Using adaptive
importance-sampling methods to accelerate rare-event probability evaluation, we
estimate the probability of an accident under a base distribution governing standard
traffic behavior. We demonstrate our framework on a highway scenario, acceler-
ating system evaluation by 2-20 times over naive Monte Carlo sampling methods
and 10-300P times (where P is the number of processors) over real-world testing.

1 Introduction

Recent breakthroughs in deep learning have accelerated the development of autonomous vehicles
(AVs); many research prototypes now operate on real roads alongside human drivers. While advances
in computer-vision techniques have made human-level performance possible on narrow perception
tasks such as object recognition, several fatal accidents involving AVs underscore the importance of
testing whether the perception and control pipeline—when considered as a whole system—can safely
interact with humans. Unfortunately, testing AV in real environments, the most straightforward
validation framework for system-level input-output behavior, requires prohibitive amounts of time
due to the rare nature of serious accidents [49]]. Concretely, a recent study [29]] argues that AVs need
to drive “hundreds of millions of miles and, under some scenarios, hundreds of billions of miles
to create enough data to clearly demonstrate their safety.” Alteratively, formally verifying an AV
algorithm’s “correctness” [34, 2 47, |37]] is difficult since all driving policies are subject to crashes
caused by other drivers [49]. It is unreasonable to ask that the policy be safe under all scenarios.
Unfortunately, ruling out scenarios where the AV should not be blamed is a task subject to logical
inconsistency, combinatorial growth in specification complexity, and subjective assignment of fault.

Motivated by the challenges underlying real-world testing and formal verification, we consider
a probabilistic paradigm—which we call a risk-based framework—where our goal is to evaluate
the probability of an accident under a base distribution representing standard traffic behavior. By
assigning learned probability values to environmental states and agent behaviors, our risk-based

*Equal contribution

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

Figure 1. Multi-lane highway driving on I-80: (left) real image, (right) rendered image from simulator

framework considers performance of the AV’s policy under a data-driven model of the world. To
efficiently evaluate the probability of an accident, we implement a photo-realistic and physics-based
simulator that provides the AV with perceptual inputs (e.g. video and range data) and traffic conditions
(e.g. other cars and pedestrians). The simulator allows parallelized, faster-than-real-time evaluations
in varying environments (e.g. weather, geographic locations, and aggressiveness of other cars).

Formally, we let P, denote the base distribution that models standard traffic behavior and X ~ P,
be a realization of the simulation (e.g. weather conditions and driving policies of other agents). For
an objective function f : X — R that measures “safety”—so that low values of f(x) correspond to
dangerous scenarios—our goal is to evaluate the probability of a dangerous event

py = Po(f(X) <) (1)

for some threshold ~. Our risk-based framework is agnostic to the complexity of the ego-policy and
views it as a black-box module. Such abstraction allows, in particular, deep-learning based perception
systems that make formal verification methods intractable.

An essential component of this approach is to estimate the base distribution P, from data; we use
public traffic data collected by the US Department of Transportation [36]. While such datasets do
not offer insights into how AVs interact with human agents—this is precisely why we design our
simulator—they illustrate the range of standard human driving behavior that the base distribution
Py must model. We use imitation learning [45] 4T}, [42], 22], [6] to learn a generative model for the
behavior (policy) of environment vehicles; unlike traditional imitation learning, we train an ensemble
of models to characterize a distribution of human-like driving policies.

As serious accidents are rare (p, is small), we view this as a rare-event simulation [4] problem;
naive Monte Carlo sampling methods require prohibitively many simulation rollouts to generate
dangerous scenarios and estimate p.,. To accelerate safety evaluation, we use adaptive importance-
sampling methods to learn alternative distributions Py that generate accidents more frequently.
Specifically, we use the cross-entropy algorithm [44]] to iteratively approximate the optimal importance
sampling distribution. In contrast to simple classical settings [44], which allow analytic updates
to Py, our high-dimensional search space requires solving convex optimization problems in each
iteration (Section). To address numerical instabilities of importance sampling estimators in high
dimensions, we carefully design search spaces and perform computations in logarithmic scale. With
our implementation, our approach produces 2-20 times as many rare events as naive Monte Carlo
methods, independent of the complexity of the ego-policy.

In addition to accelerating evaluation of p,, learning a distribution Py that frequently generates
realistic dangerous scenarios X; ~ Py is useful for engineering purposes. The importance-sampling
distribution Py not only efficiently samples dangerous scenarios, but also ranks them according to
their likelihoods under the base distribution F. This capability enables a deeper understanding of
failure modes and prioritizes their importance to improving the ego-policy.

As a system, our simulator allows fully distributed rollouts, making our approach orders of magni-
tude cheaper, faster, and safer than real-world testing. Using the asynchronous messaging library
ZeroMQ [21]], our implementation operates is fully-distributed among available CPUs and GPUs; our
rollouts are up to 30P times faster than real time, where P is the number of processors. Combined
with the cross-entropy method’s speedup, we achieve 10-300P speedup over real-world testing.

In what follows, we describe components of our open-source toolchain, a photo-realistic simulator
equipped with our data-driven risk-based framework and cross-entropy search techniques. The

toolchain can test an AV as a whole system, simulating the driving policy of the ego-vehicle by
viewing it as a black-box model. The use of adaptive-importance sampling methods motivates a unique
simulator architecture (Section [3) which allows real-time updates of the policies of environment
vehicles. In Section [d] we test our toolchain by considering an end-to-end deep-learning-based
ego-policy [9] in a multi-agent highway scenario. Figure[I]shows one configuration of this scenario
in the real world along with rendered images from the simulator, which uses Unreal Engine 4 [17].
Our experiments show that we accelerate the assessment of rare-event probabilities with respect to
naive Monte Carlo methods as well as real-world testing. We believe our open-source framework is a
step towards a rigorous yet scalable platform for evaluating AV systems, with the broader goal of
understanding how to reliably deploy deep-learning systems in safety-critical applications.

2 Rare-event simulation

To motivate our risk-based framework, we first argue that formally verifying correctness of a AV
system is infeasible due to the challenge of defining “correctness.” Imagine a scenario where an
AV commits a traffic violation to avoid collision with an out-of-control truck approaching from
behind. If the ego-vehicle decides to avoid collision by running through a red light with no further
ramifications, is it “correct” to do so? The “correctness” of the policy depends on the extent to
which the traffic violation endangers nearby humans and whether any element of the “correctness’
specification explicitly forbids such actions. That is, “correctness” as a binary output is a concept
defined by its exceptions, many elements of which are subject to individual valuations [10].

s

Instead of trying to verify correctness, we begin with a continuous measure of safety f : X — R,
where X is space of traffic conditions and behaviors of other vehicles. The prototypical example
in this paper is the minimum time-to-collision (TTC) (see Appendix [A]for its definition) to other
environmental agents over a simulation rollout. Rather than requiring safety for all x € X, we
relax the deterministic verification problem into a probabilistic one where we are concerned with
the probability under standard traffic conditions that f(X) goes below a safety threshold. Given a
distribution P, on X, our goal is to estimate the rare event probability p., := Py(f(X) <) based
on simulated rollouts f(X7),..., f(X,). As accidents are rare and p., is near 0, we treat this as a
rare-event simulation problem; see [11} 4, Chapter VI] for an overview of this topic.

First, we briefly illustrate the well-known difficulty of naive Monte Carlo simulation when p,, is small.

iid . . .
From a sample {X;} ~ P, the naive Monte Carlo estimate is P, := + SN L{f(X) <A}
As p, is small, we use relative accuracy to measure our performance, and the central limit theorem
implies the relative accuracy is approximately

PN,y

is 1-—
e P 2]+ o(1/VN) for Z ~ N(0,1).
Y

Np,

For small p.,, we require a sample of size N > 1/(p-€?) to achieve e-relative accuracy, and if f(X)
is light-tailed, the sample size must grow exponentially in .

Cross-entropy method As an alternative to a naive Monte Carlo estimator, we consider (adap-
tive) importance sampling [4]], and we use a model-based optimization procedure to find a good
importance-sampling distribution. The optimal importance-sampling distribution for estimating
p~ has the conditional density p*(z) = 1{f(z) < v} po(z)/p,, where po is the density func-
tion of Po: as po(x)/p*(z) = p, for all = satisfying 1{f(z) <~}, the estimate py, ., =

% Zfil g‘jg%g 1{f(X;) <~} isexact. This sampling scheme is, unfortunately, de facto impossible,
because we do not know p. . Instead, we use a parameterized importance sampler Py and employ an

iterative model-based search method to modify 6 so that Py approximates P*.

The cross-entropy method [44] iteratively tries to find * € argmingcg Dy (P*|Fy), the Kullback-
Leibler projection of P* onto the class of parameterized distributions P = { Py }gco. Over iterations
k, we maintain a surrogate distribution g () < 1 {f(x) < v} po(x) where y;, > - is a (potentially
random) proxy for the rare-event threshold -, and we use samples from Py to update 6 as an
approximate projection of @ onto P. The motivation underlying this approach is to update 6 so
that Py upweights regions of X’ with low objective value (i.e. unsafe) f(z). We fix a quantile level
p € (0,1)—usually we choose p € [0.01,0.2]—and use the p-quantile of f(X) where X ~ Py,

Algorithm 1 Cross-Entropy Method

1: Input: Quantile p € (0, 1), Stepsizes {au } ren, Sample sizes { N } ren, Number of iterations K
2: Initialize: 6, € ©

3: fork=0,1,2,..., K —1do

4: Sample X, 1yee- , Xk N nfgpgk

5: Set vy, as the minimum of v and the p-quantile of (X 1),..., f(Xkn,)

6: Or4+1 = argmaxyceo {akO Diy1 + (1 —ag)0 VA — 9 }

as g, our proxy for the rare event threshold v (see [23] for alternatives). We have the additional
challenge that the p-quantile of f(X) is unknown, so we approximate it using i.i.d. samples X; ~ Py, .
Compared to applications of the cross-entropy method [44] [55] that focus on low-dimensional
problems permitting analytic updates to 6, our high-dimensional search space requires solving convex
optimization problems in each iteration. To address numerical challenges in computing likelihood
ratios in high-dimensions, our implementation carefully constrains the search space and we compute
likelihoods in logarithmic scale.

We now rigorously describe the algorithmic details. First, we use natural exponential families as our
class of importance samplers P.

Definition 1. The family of density functions {pg }oco, defined with respect to base measure i, is a
natural exponential family if there exists a sufficient statistic T such that pg(z) = exp(0 T T'(z)—A(9))
where A(0) = log [, exp(0 T (x))du(z) is the log partition function and © := {6 | A(f) < oo}.

Given this family, we consider idealized updates to the parameter vector 6}, at iteration k, where we
compute projections of a mixture of (), and Py, onto P

Or+1 = argmin Dy (arQr + (1 — ax) P, | Po)

e
= argmax {axEq, [log po (X)] + (1 = ax)Re, [log ps (X)]}
6
= argmax {0 Eq, [[(X)] + (1 —)0 T VA(O)) — A(0)} . (2)
€0
The term Eq, [I'(X)] is unknown in practice, so we use a sampled estimate. For X, 1, ..., X v, Y
Py, , let vy, be the p-quantile of f(Xy1),..., f(Xk, n,) and define
(Xk,i) (Xk1)
Dy = Z % (X, ki) Z polXs, L{f(Xhi) ST (Xiyi). 3)

pek sz Pek (X&)

Using the estimate Dy in place of Eq, [['(X)] in the idealized update (2), we obtain Algorithm I}
To select the final importance sampling distribution from Algorlthml we choose 6, with the lowest
p-quantile of f(X} ;). We observe that this choice consistently improves performance over taking
the last iterate or Polyak averaging.

In the context of our rare-event simulator, we use a combination of Beta and Normal distributions
for Py. The sufficient statistics I' include (i) the parameters of the generative model of behaviors
that our imitation-learning schemes produce and (ii) the initial poses and velocities of other vehicles,
pedestrians, and obstacles in the simulation. Given a current parameter 6 and realization from the
model distribution Py, our simulator then (i) sets the parameters of the generative model for vehicle
policies and draws policies from this model, and (ii) chooses random poses and velocities for the
simulation. Our simulator is one of the largest-scale applications of cross-entropy methods.

3 Simulation framework

Two key considerations in our risk-based framework influence design choices for our simulation
toolchain: (1) learning the base distribution /) of nominal traffic behavior via data-driven modeling,
and (2) testing the AV as a whole system. We now describe how our toolchain achieves these goals.

3.1 Data-driven generative modeling

While our risk-based framework (cf. Section[2) is a concise, unambiguous measure of system safety,
the rare-event probability p., is only meaningful insofar as the base distribution P of road conditions
and the behaviors of other (human) drivers is estimable. Thus, to implement our risk-based framework,
we first learn a base distribution Py of nominal traffic behavior. Using the highway traffic dataset
NGSim [36], we train policies of human drivers via imitation learning [45} 41 142, [22] |6]. Our data
consists of videos of highway traffic [36]], and our goal is to create models that imitate human driving
behavior even in scenarios distinct from those in the data. We employ an ensemble of generative
adversarial imitation learning (GAIL) [22] models to learn Fy. Our approach is motivated by the
observation that reducing an imitation-learning problem to supervised learning—where we simply
use expert data to predict actions given vehicle states—suffers from poor performance in regions
of the state space not encountered in data [41},142]. Reinforcement-learning techniques have been
observed to improve generalization performance, as the imitation agent is able to explore regions of
the state space in simulation during training that do not necessarily occur in the expert data traces.

Generically, GAIL is a minimax game between two functions: a discriminator Dy and a generator
G¢ (with parameters ¢ and § respectively). The discriminator takes in a state-action pair (s, u)
and outputs the probability that the pair came from real data, P(real data). The generator takes in
a state s and outputs a conditional distribution G¢(s) := P(u | s) of the action u to take given
state s. In our context, G¢(-) is then the (learned) policy of a human driver given environmental
inputs s. Training the generator weights £ occurs in a reinforcement-learning paradigm with reward
—log(1 — Dy(s, Ge(s))). We use the model-based variant of GAIL (MGAIL) [6] which renders this
reward fully differentiable with respect to £ over a simulation rollout, allowing efficient model training.
GAIL has been validated by Kuefler et al. [33] to realistically mimic human-like driving behavior
from the NGSim dataset across multiple metrics. These include the similarity of low-level actions
(speeds, accelerations, turn-rates, jerks, and time-to-collision), as well as higher-level behaviors (lane
change rate, collision rate, hard-brake rate, etc). See Appendix [C|for a reference to an example video
of the learned model driving in a scenario alongside data traces from human drivers.

Our importance sampling and cross-entropy methods use not just a single instance of model parame-
ters &, but rather a distribution over them to form a generative model of human driving behavior. To
model this distribution, we use a (multivariate normal) parametric bootstrap over a trained ensemble
of generators ¢, i = 1,...,m. Our models & are high-dimensional (¢ € R?, d > m) as they
characterize the weights of large neural networks, so we employ the graphical lasso [[15] to fit the
inverse covariance matrix for our ensemble. This approach to modeling uncertainty in neural-network
weights is similar to the bootstrap approach of Osband et al. [38]]. Other approaches include using
dropout for inference [16] and variational methods [18} (8}, [31]].

While several open source driving simulators have been proposed [14} 48 39]], our problem formula-
tion requires unique features to allow sampling from a continuous distribution of driving policies for
environmental agents. Conditional on each sample of model parameters &, the simulator constructs
a (random) rollout of vehicle behaviors according to G¢. Unlike other existing simulators, ours is
designed to efficiently execute and update these policies as new samples ¢ are drawn for each rollout.

3.2 System architecture

The second key characteristic of our framework is that it enables black-box testing the AV as a
whole system. Flaws in complex systems routinely occur at poorly specified interfaces between
components, as interactions between components induce unexpected behavior. Consequently, solely
testing subcomponents of an AV control pipeline separately is insufficient [[1]]. Moreover, it is
increasingly common for manufacturers to utilize software and hardware artifacts for which they
do not have any whitebox model [19,|12]]. We provide a concise but extensible language-agnostic
interface to our benchmark world model so that common AV sensors such as cameras and lidar can
provide the necessary inputs to induce vehicle actuation commands.

Our simulator is a distributed, modular framework, which is necessary to support the inclusion
of new AV systems and updates to the environment-vehicle policies. A benefit of this design is
that simulation rollouts are simple to parallelize. In particular, we allow instantiation of multiple
simulations simultaneously, without requiring that each include the entire set of components. For
example, a desktop may support only one instance of Unreal Engine but could be capable of simulating

10 physics simulations in parallel; it would be impossible to fully utilize the compute resource with
a monolithic executable wrapping all engines together. Our architecture enables instances of the
components to be distributed on heterogeneous GPU compute clusters while maintaining the ability to
perform meaningful analysis locally on commodity desktops. In Appendix[A] we detail our scenario
specification, which describes how Algorithm[Tjmaps onto our distributed architecture.

4 Experiments

In this section, we demonstrate our risk-based framework on a multi-agent highway scenario. As the
rare-event probability of interest p, gets smaller, the cross-entropy method learns to sample more
rare events compared to naive Monte Carlo sampling; we empirically observe that cross-entropy
produces 2-20 times as many rare events as its naive counterpart. Our findings hold across different
ego-vehicle policies, base distributions Py, and scenarios.

To highlight the modularity of our simulator, we evaluate the rare-event probability p., on two different
ego-vehicle policies. The first is an instantiation of an imitation learning (non-vision) policy which
uses lidar as its primary perceptual input. Secondly, we consider a full-stack vision-based controller
(vision policy), where the ego-vehicle drives with an end-to-end highway autopilot network [9]],
taking as input a rendered image from the simulator (and lidar observations) and outputting actuation
commands. See Appendix [B]for a summary of network architectures used.

We consider a scenario consisting of six agents, five of which are considered part of the environment.
The environment vehicles’ policies follow the distribution learned in Section[3.1} All vehicles are
constrained to start within a set of possible initial configurations consisting of pose and velocity, and
each vehicle has a goal of reaching the end of the approximately 2 km stretch of road. Fig.|[l|shows
one such configuration of the scenario, along with rendered images from the simulator. We generate
scene geometry from the as-built surveyors’ records and photogrammetric reconstructions of satellite
imagery of the portion of I-80 in Emeryville, California where the traffic data was collected [36].

Simulation parameters We detail our postulated base distribution Fy. Letting m denote the number
of vehicles, we consider the random tuple X = (S, T, W, V, £) as our simulation parameter where
the pair (S,T) € R"™ 2 indicates the two-dimensional positioning of each vehicle in their respective
lanes (in meters), W the orientation of each vehicle (in degrees), and V' the initial velocity of each
vehicle (in meters per second). We use & € R*%4 to denote the weights of the last layer of the neural
network trained to imitate human-like driving behavior. Specifically, we set S ~ 40Beta(2, 2) 4 80
with respect to the starting point of the road, T' ~ 0.5Beta(2,2) — 0.25 with respect to the lane’s
center, W ~ 7.2Beta(2,2) — 3.6 with respect to facing forward, and V' ~ 10Beta(2, 2) + 10. We
assume & ~ N (pg, Xo), with the mean and covariance matrices learned via the ensemble approach
outlined in Section The neural network whose last layer is parameterized by £ describes the
policy of environment vehicles; it takes as input the state of the vehicle and lidar observations of the
surrounding environment (see Appendix [B|for more details). Throughout this section, we define our
measure of safety f : X — R as the minimum time-to-collision (TTC) over the simulation rollout.
We calculate TTC from the center of mass of the ego vehicle; if the ego-vehicle’s body crashes into
obstacles, we end the simulation before the TTC can further decrease (see Appendix [A]for details).

Cross-entropy method Throughout our experiments, we impose constraints on the space of
importance samplers (adversarial distributions) for feasibility. Numerical stability considerations
predominantly drive our hyperparameter choices. For model parameters £, we also constrain the
search space to ensure that generative models G¢ maintain reasonably realistic human-like policies
(recall Sec.[3.1). For S, T, W, and V, we let {Beta(c,) : a, 8 € [1.5, 7]} be the model space over
which the cross-entropy method searches, scaled and centered appropriately to match the scale of the
respective base distributions. We restrict the search space of distributions over ¢ € R*%4 by searching
over {N (i, o) : ||pp — pollo, < .01}, where (110, o) are the parameters of the base (bootstrap)
distribution. For our importance sampling distribution Py, we use products of the above marginal
distributions. These restrictions on the search space mitigate numerical instabilities in computing
likelihood ratios within our optimization routines, which is important for our high-dimensional
problems.

We first illustrate the dependence of the cross-entropy method on its hyperparameters. We choose
to use a non-vision ego-vehicle policy as a test bed for hyperparameter tuning, since this allows us
to take advantage of the fastest simulation speeds for our experiments. We focus on the effects (in

©

%

)
Il
e
&

-
)
Il

=]

o

()

&~

Ratio of event frequency (CE/Naive)
(=)
Ratio of variance (CE/Naive)

—p=0.01
—p =005
3 = I p=01
10" —p=02
2 L L L L L I} L L L L L n I}
0.14 016 0.8 0.2 022 024 026 014 016 018 02 022 024 026
Ytest (seconds) Ytest (seconds)
(a) Ratio of number of rare events vs. threshold (b) Ratio of variance vs. threshold

Figure 2. The ratio of (a) number of rare events and () variance of estimator for p., between cross-
entropy method and naive MC sampling for the non-vision ego policy. Rarity is inversely proportional
to v, and, as expected, we see the best performance for our method over naive MC at small ~.

Search Algorithm | ~sest = 0.14 Yeest = 0.15 Yeest = 0.19 Yeest = 0.20
Naive 1300K (12.44+3.1)e-6 (80.6+7.91)e-6 (133+£3.2)e-5 (186+3.79)e-5
Cross-entropy 100K | (19.84+8.88)e-6 (66.1 £ 15)e-6 (108+9.51)e-5 (164 £ 14)e-5
Naive 100K (20+14.1)e-6 (100+£ 31.6)e-6 (132+£11.5)e-5 (185+£13.6)e-5

Table 1. Estimate of rare-event probability p- (non-vision ego policy) with standard errors. For the
cross-entropy method, we show results for the learned importance sampling distribution with p = 0.01.

Algorithm of varying the most influential hyperparameter, p € (0, 1], which is the quantile level
determining the rarity of the observations used to compute the importance sampler . Intuitively, as p
approaches 0, the cross-entropy method learns importance samplers Py that up-weight unsafe regions
of X with lower f(x), increasing the frequency of sampling rare events (events with f(X) < 7).
In order to avoid overfitting 65 as p — 0, we need to increase Ny as p decreases. Our choice of
Ny, is borne out of computational constraints as it is the biggest factor that determines the run-time
of the cross-entropy method. Consistent with prior works [44, 24], we observe empirically that
p € [0.01,0.2] is a good range for the values of Nj, deemed feasible for our computational budget
(N, = 1000 ~ 5000). We fix the number of iterations at X = 100, number of samples taken per
iteration at N = 5000, step size for updates at o, = 0.8, and v = 0.14. As we see below, we
consistently observe that the cross-entropy method learns to sample significantly more rare events,
despite the high-dimensional nature (d ~ 500) of the problem.

To evaluate the learned parameters, we draw n = 10° samples from the importance sampling
distribution to form an estimate of p.. In Figure |Z|, we vary p and report the relative performance of
the cross-entropy method compared to naive Monte Carlo sampling. Even though we set v = 0.14 in
Algorithm[T] we evaluate the performance of all models with respect to multiple threshold levels Ytest.-
We note that as p approaches 0, the cross-entropy method learns to frequently sample increasingly
rare events; the cross-entropy method yields 3-10 times as many dangerous scenarios, and achieves
2-16 times variance reduction depending on the threshold level +;est. In Table m we contrast the
estimates provided by naive Monte Carlo and the importance sampling estimator provided by the
cross-entropy method with p = 0.01; to form a baseline estimate, we run naive Monte Carlo with
1.3 - 10° samples. For a given number of samples, the cross-entropy method with p = 0.01 provides
more precise estimates for the rare-event probability p., ~ 10~ over naive Monte Carlo.

We now leverage the tuned hyperparameter (p = 0.01) for our main experiment: evaluating the
probability of a dangerous event for the vision-based ego policy. We find that the hyperparameters
for the cross-entropy method generalize, allowing us to produce good importance samplers for a
very different policy without further tuning. Based on our computational budget (with our current
implementation, vision-based simulations run about 15 times slower than simulations with only
non-vision policies), we choose K = 20 and N, = 1000 for the cross-entropy method to learn a
good importance sampling distribution for the vision-based policy (although we also observe similar
behavior for Ny, as small as 100). In Figure[3] we illustrate again that the cross-entropy method learns
to sample dangerous scenarios more frequently (Figure [3h)—up to 18 times that of naive Monte

—~20

Ratio of variance (CE/Naive)

Ratio of event frequency (CE/Naive

—p=0.01
107 - !

0.22 0.24 0.26 0.28 0.3 0.22 0.24 0.26 0.28 0.3
Yiest (seconds) Vest (seconds)

(a) Ratio of number of rare events vs. threshold (b) Ratio of variance vs. threshold

Figure 3. The ratio of (a) number of rare events and () variance of estimator for p., between cross-
entropy method and naive MC sampling for the vision-based ego policy.

Search Algorithm [Yiest = 0.22 Yeest = 0.23 Veest = 0.24 Yeest = 0.25
Cross-entropy 50K | (5.87£1.82)e-5 (13.0+£2.94)e-5 (19.0 £3.14)e-5 (4.52 4+ 1.35)e-4
Naive 50K (113+4.60)e-5 (20.6+6.22)e-5 (43249.00)e-5 (6.75+1.13)e-4

Table 2. Estimate of rare-event probability p (non-vision ego policy) with standard errors. For the
cross-entropy method, we show results for the learned importance sampling distribution with p = 0.01.

Carlo—and produces importance sampling estimators with lower variance (Figure[3p). As a result,
our estimator in Table[2]is better calibrated compared to that computed from naive Monte Carlo.

Qualitative analysis We provide a qualitative interpretation for the learned parameters of the
importance sampler. For initial velocities, angles, and positioning of vehicles, the importance sampler
shifts environmental vehicles to box in the ego-vehicle and increases the speeds of trailing vehicles
by 20%, making accidents more frequent. We also observe that the learned distribution for initial
conditions have variance 50% smaller than that of the base distribution, implying concentration
around adversarial conditions. Perturbing the policy weights £ for GAIL increases the frequency of
risky high-level behaviors (lane-change rate, hard-brake rate, etc.). An interesting consequence of
using our definition of TTC from the center of the ego vehicle (cf. Appendix[A]) as a measure of
safety is that dangerous events f(X) < yiest (for small v4e5¢) include frequent sideswiping behavior,
as such accidents result in smaller TTC values than front- or rear-end collisions. See Appendix [C]
for a reference to supplementary videos that exhibit the range of behavior across many levels ~;est -
The modularity of our simulation framework easily allows us to modify the safety objective to an
alternative definition of TTC or even include more sophisticated notions of safety, e.g. temporal-logic
specifications or implementations of responsibility-sensitive safety (RSS) [49,40].

5 Related work and conclusions

Given the complexity of AV software and hardware components, it is unlikely that any single method
will serve as an oracle for certification, and many existing tools are complementary to our risk-based
framework. In this section, we compare and contrast representative results in testing, verification, and
simulation.

AV testing generally consists of three paradigms. The first, largely attributable to regulatory efforts,
uses a finite known set of basic competencies (e.g. the Euro NCAP Test Protocol [46]]); while this
methodology is successful in designing safety features such as airbags and seat-belts, the non-adaptive
nature of static testing is less effective in complex software systems found in AVs. Alternatively,
real-world testing—deployment of vehicles with human oversight—exposes the vehicle to a wider
variety of unpredictable test conditions. However, as we outlined above, these methods pose a danger
to the public and require prohibitive number of driving hours due to the rare nature of accidents [29].
Simulation-based falsification (in our context, simply finding any crash) has also been successfully
utilized [51]]; this approach does not maintain a link to the likelihood of the occurrence of a particular
event, which we believe to be key in acting to prioritize and correct AV behavior.

Formal verification methods [34} 2| 147, 37] have emerged as a candidate to reduce the intractability
of empirical validation. A verification procedure considers whether the system can ever violate
a specification and returns either a proof that there is no such execution or a counterexample.
Verification procedures require a white-box description of the system (although it may be abstract), as
well as a mathematically precise specification for correctness. Due to the impossibility of certifying
safety in all scenarios, however, these approaches [49] require further specifications that assign
blame in the case of a crash. Such assignment of blame is impossible to completely characterize
and relies on subjective notions of fault. Our risk-based framework allows one to circumvent this
difficulty by only using a measure of safety that does not assign blame (e.g. TTC) and replacing the
specifications that assign blame with a probabilistic notion of how likely the accident is. While this
approach requires a learned model of the world Py—a highly nontrivial statistical task in itself—the
adaptive importance sampling techniques we employ can still efficiently identify dangerous scenarios
even when Fj is not completely accurate. Conceptually, we view verification and our framework
as complementary; they form powerful tools that can evaluate safety before deploying a fleet for
real-world testing.

Even given a consistent and complete notion of blame, verification remains highly intractable from
a computational standpoint. Efficient algorithms only exist for restricted classes of systems in the
domain of AVs, and they are fundamentally difficult to scale. Specifically, since AVs—unlike previous
successful applications of verification methods to application domains such as microprocessors [S]—
include both continuous and discrete dynamics. This class of dynamics falls within the purview of
hybrid systems [35]], for which exhaustive verification is largely undecidable [20]].

Verifying individual components of the perception pipeline, even as standalone systems, is a nascent,
active area of research (see [3 13} 7] and many others). Current subsystem verification techniques
for deep neural networks [28| 30, 50] do not scale to state-of-the-art models and largely investigate
the robustness of the network with respect to small perturbations of a single sample. There are two
key assumptions in these works; the label of the input is unchanged within the radius of allowable
perturbations, and the resulting expansion of the test set covers a meaningful portion of possible
inputs to the network. Unfortunately, for realistic cases in AVs it is likely that perturbations to
the state of the world which in turn generates an image should change the label. Furthermore, the
combinatorial nature of scenario configurations casts serious doubt on any claims of coverage.

In our risk-based framework, we replace the complex system specifications required for formal
verification methods with a model P, that we learn via imitation-learning techniques. Generative
adversarial imitation learning (GAIL) was first introduced by Ho and Ermon [22] as a way to directly
learn policies from data and has since been applied to model human driving behavior by Kuefler et al.
[33]. Model-based GAIL (MGAIL) is the specific variant of GAIL that we employ; introduced by
Baram et al. [6], MGAIL’s generative model is fully differentiable, allowing efficient model training
with standard stochastic approximation methods.

The cross-entropy method was introduced by Rubinstein [43]] and has attracted interest in many rare-
event simulation scenarios [44,|32]]. More broadly, it can be thought of as a model-based optimization
method [24H26 53] 127, 156]]. With respect to assessing safety of AVs, the cross-entropy method has
recently been applied in simple lane-changing and car-following scenarios in two dimensions [54} 55].
Our work significantly extend these works by implementing a photo-realistic simulator that can assess
the deep-learning based perception pipeline along with the control framework. We leave developing
rare-event simulation methods that scale better with dimension as a future work.

To summarize, a fundamental tradeoff emerges when comparing the requirements of our risk-based
framework to other testing paradigms, such as real-world testing or formal verification. Real-world
testing endangers the public but is still in some sense a gold standard. Verified subsystems provide
evidence that the AV should drive safely even if the estimated distribution shifts, but verification
techniques are limited by computational intractability as well as the need for both white-box models
and the completeness of specifications that assign blame (e.g. [49]). In turn, our risk-based framework
is most useful when the base distribution P, is accurate, but even when F, is misspecified, our
adaptive importance sampling techniques can still efficiently identify dangerous scenarios, especially
those that may be missed by verification methods attempting to assign blame. Our framework
offers significant speedups over real-world testing and allows efficient evaluation of black-box AV
input/output behavior, providing a powerful tool to aid in the design of safe AVs.

Acknowledgments

AS, HN, and JD were partially supported by the SAIL-Toyota Center for Al Research. AS was
also partially supported by a Stanford Graduate Fellowship and a Fannie & John Hertz Foundation
Fellowship. HN was partially supported by a Samsung Fellowship. MOK was partially supported by
a National Science Foundation Graduate Research Fellowship. JD was partially supported by the
National Science Foundation award NSF-CAREER-1553086.

References

[1] H. Abbas, M. O’Kelly, A. Rodionova, and R. Mangharam. Safe at any speed: A simulation-
based test harness for autonomous vehicles. LNCS. Springer, 2018.

[2] M. Althoff and J. Dolan. Online verification of automated road vehicles using reachability
analysis. Robotics, IEEE Transactions on, 30(4):903-918, Aug 2014. ISSN 1552-3098. doi:
10.1109/TRO.2014.2312453.

[3] S. Arora, A. Bhaskara, R. Ge, and T. Ma. Provable bounds for learning some deep representa-
tions. In International Conference on Machine Learning, pages 584-592. , 2014.

[4] S. Asmussen and P. W. Glynn. Stochastic Simulation: Algorithms and Analysis. Springer, 2007.

[5] C. Baier, J.-P. Katoen, et al. Principles of model checking, volume 26202649. MIT press
Cambridge, 2008.

[6] N.Baram, O. Anschel, I. Caspi, and S. Mannor. End-to-end differentiable adversarial imitation
learning. In International Conference on Machine Learning, pages 390-399, 2017.

[7] P. L. Bartlett, D. J. Foster, and M. J. Telgarsky. Spectrally-normalized margin bounds for neural
networks. In Advances in Neural Information Processing Systems, pages 6241-6250. , 2017.

[8] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight uncertainty in neural
networks. arXiv preprint arXiv:1505.05424, 2015.

[9] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel,
M. Monfort, U. Muller, J. Zhang, et al. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016.

[10] J.-F. Bonnefon, A. Shariff, and I. Rahwan. The social dilemma of autonomous vehicles.
Science, 352(6293):1573-1576, 2016. ISSN 0036-8075. doi: 10.1126/science.aaf2654. URL
http://science.sciencemag.org/content/352/6293/1573.

[11] J. Bucklew. Introduction to rare event simulation. Springer Science & Business Media, 2013.

[12] M. Cheah, S. A. Shaikh, J. Bryans, and H. N. Nguyen. Combining third party components
securely in automotive systems. In IFIP International Conference on Information Security
Theory and Practice, pages 262-269. Springer, 2016.

[13] N. Cohen, O. Sharir, and A. Shashua. On the expressive power of deep learning: A tensor
analysis. In Conference on Learning Theory, pages 698-728. , 2016.

[14] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA: An open urban driving
simulator. In Proceedings of the 1st Annual Conference on Robot Learning, pages 1-16, 2017.

[15] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the
graphical lasso. Biostatistics, 9(3):432—441, 2008.

[16] Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model un-
certainty in deep learning. In International Conference on Machine Learningearning, pages
1050-1059, 2016.

[17] E. Games. Unreal engine 4 documentation. URL https://docs. unrealengine.
com/latest/INT/index. html, 2015.

10

http://science.sciencemag.org/content/352/6293/1573

[18] A. Graves. Practical variational inference for neural networks. In Advances in Neural Informa-
tion Processing Systems, pages 2348-2356, 2011.

[19] H. Heinecke, K.-P. Schnelle, H. Fennel, J. Bortolazzi, L. Lundh, J. Leflour, J.-L. Maté,
K. Nishikawa, and T. Scharnhorst. Automotive open system architecture-an industry-wide
initiative to manage the complexity of emerging automotive e/e-architectures. Technical report,
SAE Technical Paper, 2004.

[20] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable about hybrid automata?
J. Comput. Syst. Sci., 57(1):94-124, 1998.

[21] P. Hintjens. ZeroMQ: messaging for many applications. " O’Reilly Media, Inc.", 2013.

[22] J. Ho and S. Ermon. Generative adversarial imitation learning. In Advances in Neural Informa-
tion Processing Systems, pages 4565-4573, 2016.

[23] T. Homem-de Mello. A study on the cross-entropy method for rare-event probability estimation.
INFORMS Journal on Computing, 19(3):381-394, 2007.

[24] J. Hu and P. Hu. On the performance of the cross-entropy method. In Simulation Conference
(WSC), Proceedings of the 2009 Winter, pages 459—468. IEEE, 2009.

[25] J. Hu and P. Hu. Annealing adaptive search, cross-entropy, and stochastic approximation in
global optimization. Naval Research Logistics (NRL), 58(5):457-477, 2011.

[26] J. Hu, P. Hu, and H. S. Chang. A stochastic approximation framework for a class of randomized
optimization algorithms. IEEE Transactions on Automatic Control, 57(1):165-178, 2012.

[27] J. Hu, E. Zhou, and Q. Fan. Model-based annealing random search with stochastic averaging.
ACM Transactions on Modeling and Computer Simulation (TOMACS), 24(4):21, 2014.

[28] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety verification of deep neural networks.
In International Conference on Computer Aided Verification, pages 3—-29. Springer, 2017.

[29] N. Kalra and S. M. Paddock. Driving to safety: How many miles of driving would it take
to demonstrate autonomous vehicle reliability? Transportation Research Part A: Policy and
Practice, 94:182-193, 2016.

[30] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex: An efficient smt solver
for verifying deep neural networks. arXiv:1702.01135 [cs.Al], 1:1,2017.

[31] D.P. Kingma, T. Salimans, and M. Welling. Variational dropout and the local reparameterization
trick. In Advances in Neural Information Processing Systems, pages 2575-2583, 2015.

[32] D. P. Kroese, R. Y. Rubinstein, and P. W. Glynn. The cross-entropy method for estimation.
Handbook of Statistics: Machine Learning: Theory and Applications, 31:19-34, 2013.

[33] A. Kuefler, J. Morton, T. Wheeler, and M. Kochenderfer. Imitating driver behavior with
generative adversarial networks. In Intelligent Vehicles Symposium (IV), 2017 IEEE, pages
204-211. IEEE, 2017.

[34] M. Kwiatkowska, G. Norman, and D. Parker. Prism 4.0: Verification of probabilistic real-time
systems. In International conference on computer aided verification, pages 585-591. Springer,
2011.

[35] J. Lygeros. Lecture notes on hybrid systems. In Notes for an ENSIETA workshop, 2004.
[36] U.D. of Transportation FHWA. Ngsim — next generation simulation, 2008.

[37] M. O’Kelly, H. Abbas, S. Gao, S. Shiraishi, S. Kato, and R. Mangharam. Apex: Autonomous
vehicle plan verification and execution. volume 1, Apr 2016.

[38] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy. Deep exploration via bootstrapped dqn. In
Advances in neural information processing systems, pages 4026-4034, 2016.

11

[39] C. Quiter and M. Ernst. Deepdrive. https://github.com/deepdrive/deepdrive, 2018.

[40] N. Roohi, R. Kaur, J. Weimer, O. Sokolsky, and I. Lee. Self-driving vehicle verification towards
a benchmark. arXiv preprint arXiv:1806.08810, 2018.

[41] S. Ross and D. Bagnell. Efficient reductions for imitation learning. In Proceedings of the
thirteenth international conference on artificial intelligence and statistics, pages 661-668, 2010.

[42] S.Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured prediction
to no-regret online learning. In Proceedings of the fourteenth international conference on
artificial intelligence and statistics, pages 627-635, 2011.

[43] R. Y. Rubinstein. Combinatorial optimization, cross-entropy, ants and rare events. In Stochastic
optimization: algorithms and applications, pages 303-363. Springer, 2001.

[44] R. Y. Rubinstein and D. P. Kroese. The cross-entropy method: A unified approach to Monte
Carlo simulation, randomized optimization and machine learning. Information Science &
Statistics, Springer Verlag, NY, 2004.

[45] S. Russell. Learning agents for uncertain environments. In Proceedings of the eleventh annual
conference on Computational learning theory, pages 101-103. ACM, 1998.

[46] R. Schram, A. Williams, and M. van Ratingen. Implementation of autonomous emergency
braking (aeb), the next step in euro ncap’s safety assessment. ESV, Seoul, 2013.

[47] S. A. Seshia, D. Sadigh, and S. S. Sastry. Formal methods for semi-autonomous driving. In
Proceedings of the 52nd Annual Design Automation Conference, page 148. ACM, 2015.

[48] S. Shah, D. Dey, C. Lovett, and A. Kapoor. Airsim: High-fidelity visual and physical simulation
for autonomous vehicles. In Field and Service Robotics, 2017. URL https://arxiv.org/
abs/1705.05065.

[49] S. Shalev-Shwartz, S. Shammah, and A. Shashua. On a formal model of safe and scalable
self-driving cars. arXiv preprint arXiv:1708.06374,2017.

[50] V. Tjeng and R. Tedrake. Verifying neural networks with mixed integer programming.
arXiv:1711.07356 [cs.LG], 2017.

[51] C. E. Tuncali, T. P. Pavlic, and G. Fainekos. Utilizing s-taliro as an automatic test generation
framework for autonomous vehicles. In Intelligent Transportation Systems (ITSC), 2016 IEEE
19th International Conference on, pages 1470-1475. IEEE, 2016.

[52] K. Vogel. A comparison of headway and time to collision as safety indicators. Accident analysis
& prevention, 35(3):427-433, 2003.

[53] Z.B. Zabinsky. Stochastic adaptive search for global optimization, volume 72. Springer Science
& Business Media, 2013.

[54] D.Zhao. Accelerated Evaluation of Automated Vehicles. Ph.D. thesis, Department of Mechanical
Engineering, University of Michigan, 2016.

[55] D. Zhao, X. Huang, H. Peng, H. Lam, and D. J. LeBlanc. Accelerated evaluation of automated
vehicles in car-following maneuvers. IEEE Transactions on Intelligent Transportation Systems,
19(3):733-744, 2018.

[56] E.Zhou and J. Hu. Gradient-based adaptive stochastic search for non-differentiable optimization.
IEEE Transactions on Automatic Control, 59(7):1818-1832, 2014.

12

https://github.com/deepdrive/deepdrive
https://arxiv.org/abs/1705.05065
https://arxiv.org/abs/1705.05065

A Scenario specification

A scenario specification consists of a scenario description and outputs both p., (1), the accident rate,
and a dataset consisting of initial conditions and the minimum time to collision, our continuous
objective safety measure. Concretely, a scenario description includes

e a set of possible initial conditions, e.g. a range of velocities and poses for each agent
e a safety measure specification for the ego agent,
e a generative model of environment policies, an ego vehicle model,

e a world geometry model, e.g.a textured mesh of the static scene in which the scenario is to
take place.

Given the scenario description, the search module creates physics and rendering engine worker
instances, and Algorithm [I] then adaptively searches through many perturbations of conditions in
the scenario, which we call scenario realizations. A set of scenario realizations may be mapped to
multiple physics, rendering, and agent instantiations, evaluated in parallel, and reduced by a sink
node which reports a measure of each scenarios performance relative to the specification.

In our implementation the safety measure is minimum time-to-collision (TTC). TTC is defined as
the time it would take for two vehicles to intercept one another given that they each maintain their
current heading and velocity [52]. The TTC between the ego-vehicle and vehicle ¢ is given by

T (t)
TTC;(t) = ———=, 4
=5 @
where r; is the distance between the ego vehicle and vehicle ¢, and 7; the time derivative of this
distance (which is simply computed by projecting the relative velocity of vehicle 7 onto the vector
between the vehicles’ poses).

In this paper, vehicles are described as oriented rectangles in the 2D plane. Since we are interested in
the time it would take for the ego-vehicle to intersect the polygonal boundary of another vehicle on
the road, we utilize a finite set of range and range measurements in order to approximate the TTC
metric. For a given configuration of vehicles, we compute NV uniformly spaced angles 61, ...,0y in
the range [0, 27] with respect to the ego vehicle’s orientation and cast rays outward from the center
of the ego vehicle. For each direction we compute the distance which a ray could travel before
intersecting one of the M other vehicles in the environment. These form /N range measurements
s1,...,8n. Further, for each ray s;, we determine which vehicle (if any) that ray hit; projecting
the relative velocity of this vehicle with respect to ego vehicle gives the range-rate measurement s;.
Finally, we approximate the minimum TTC for a given simulation rollout X of length T" discrete

time steps by:
. . —si(t)
X) =
f(X) = min_ <i_?3.1.1.1,zv 5i(t))

Note that this measure can approximate the true TTC arbitrarily well via choice of N and the
discretization of time used by the simulator. Furthermore, note that our definition of TTC is with
respect to the center of the ego vehicle touching the boundary of another vehicle. Crashing, on the
other hand, is defined in our simulation as the intersection of boundaries of two vehicles. Thus, TTC
values we evaluate in our simulation are nonzero even during crashes, since the center of the ego
vehicle has not yet collided with the boundary of another vehicle.

B Network architectures

The MGAIL generator model we use takes the same inputs as that of Kuefler et al. [33]—the
dynamical states of the vehicle as well as virtual lidar beam reflections. Specifically, we take as
inputs: geometric parameters (vehicle length/width), dynamical states (vehicle speed, lateral and
angular offsets with respect to the center and heading of the lane, distance to left and right lane
boundaries, and local lane curvature), three indicators for collision, road departure, and traveling
in reverse, and lidar sensor observations (ranges and range-rates of 20 lidar beams) as depicted in
Figure[d] The generator has two hidden layers of 200 and 100 neurons. The output consists of the
mean and variance of normal distributions for throttle and steering commands; we then sample from

13

Figure 4: Depiction of lidar sensor input used for GAIL models.

these distributions to draw a given vehicle’s action. The discriminator shares the same size for hidden
layers. The forward model used to allow fully-differentiable training first encodes both the state and
action through a 150 neuron layer and also adds a GRU layer to the state encoding. A Hadamard
product of the results creates a joint embedding which is put through three hidden layers each of 150
neurons. The output is a prediction of the next state.

The end-to-end highway autopilot model is a direct implementation of Bojarski et al. [9]] via the code
found at the link https://github.com/sullychen/autopilot-tensorflow. In our implemen-
tation of the vision-based policy, this highway autopilot model uses rendered images to produce
steering commands. Lidar inputs are used to generate throttle commands using the same network as
the non-vision policy.

C Supplementary videos

We have provided some videos in our supplement to augment the analysis in our paper:

e gail.mp4 provides an example of a trained GAIL model driving alongside data traces from
real human drivers [36]].

e Example videos from rollouts. The filenames start with “mttc =" to indicate the minimum
TTC that resulted between the ego and any other vehicle during the rollout. Note that even
crashes have nonzero values of TTC due to the definition we used for TTC from the center
of the ego vehicle (cf. Appendix [A)). The videos are all played back at twice real-time speed.
The videos included in the supplement are:

— Crashes:
* mttc = 0.23 — crash.mp4
* mttc = 0.30.mp4
* mttc = 0.42.mp4
* mttc = 0.56.mp4

— Non-crashes:

mttc = 0.23 — nocrash.mp4
mttc = 0.79.mp4

mttc = 1.43.mp4

mttc = 2.01.mp4

mttc = 3.05.mp4

mttc = 6.00.mp4

mttc = 6.01.mp4

mttc = 10.11.mp4

¥ X X X X X X X

14

https://github.com/sullychen/autopilot-tensorflow

	Introduction
	Rare-event simulation
	Simulation framework
	Data-driven generative modeling
	System architecture

	Experiments
	Related work and conclusions
	Scenario specification
	Network architectures
	Supplementary videos

